User-Side Indoor Localization Using CSI Fingerprinting

Parham Kazemi, H. Al-Tous, Christoph Studer, O. Tirkkonen
{"title":"User-Side Indoor Localization Using CSI Fingerprinting","authors":"Parham Kazemi, H. Al-Tous, Christoph Studer, O. Tirkkonen","doi":"10.1109/spawc51304.2022.9833973","DOIUrl":null,"url":null,"abstract":"We consider a scalable User Equipment (UE)-side indoor localization framework that processes Channel State Information (CSI) from multiple Access Points (APs). We use CSI features that are resilient to synchronization errors and other hardware impairments. As a consequence our method does not require accurate network synchronization among APs. Increasing the number of APs considered by a UE profoundly improves fingerprint positioning, with the cost of increasing complexity and channel estimation time. In order to improve scalability of the framework to large networks consisting of multiple APs in many rooms, we train a multi-layer neural network that combines CSI features and unique AP identifiers of a subset of APs in range of a UE. We simulate UE-side localization using CSI obtained from a commercial raytracer. The considered method processing frequency selective CSI achieves an average positioning error of 60cm, outperforming methods that process received signal strength information only. The mean localization accuracy loss compared to a non-scalable approach with perfect synchronization and CSI is 20cm.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9833973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a scalable User Equipment (UE)-side indoor localization framework that processes Channel State Information (CSI) from multiple Access Points (APs). We use CSI features that are resilient to synchronization errors and other hardware impairments. As a consequence our method does not require accurate network synchronization among APs. Increasing the number of APs considered by a UE profoundly improves fingerprint positioning, with the cost of increasing complexity and channel estimation time. In order to improve scalability of the framework to large networks consisting of multiple APs in many rooms, we train a multi-layer neural network that combines CSI features and unique AP identifiers of a subset of APs in range of a UE. We simulate UE-side localization using CSI obtained from a commercial raytracer. The considered method processing frequency selective CSI achieves an average positioning error of 60cm, outperforming methods that process received signal strength information only. The mean localization accuracy loss compared to a non-scalable approach with perfect synchronization and CSI is 20cm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用CSI指纹的用户侧室内定位
我们考虑了一个可扩展的用户设备(UE)侧室内定位框架,该框架处理来自多个接入点(ap)的信道状态信息(CSI)。我们使用对同步错误和其他硬件损坏具有弹性的CSI特性。因此,我们的方法不需要在ap之间进行精确的网络同步。增加终端考虑的ap数量可以极大地改善指纹定位,但代价是复杂性和信道估计时间的增加。为了提高框架对由多个房间中的多个AP组成的大型网络的可扩展性,我们训练了一个多层神经网络,该网络结合了CSI特征和UE范围内AP子集的唯一AP标识符。我们使用从商业射线追踪器获得的CSI模拟ue端定位。所考虑的方法处理频率选择性CSI的平均定位误差为60cm,优于仅处理接收信号强度信息的方法。与具有完美同步和CSI的非可伸缩方法相比,平均定位精度损失为20cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1