J. Valdez, Xun Zhang, Jackeline Abad Torres, Sandip Roy
{"title":"Fast fault location in power transmission networks using transient signatures from sparsely-placed synchrophasors","authors":"J. Valdez, Xun Zhang, Jackeline Abad Torres, Sandip Roy","doi":"10.1109/NAPS.2014.6965412","DOIUrl":null,"url":null,"abstract":"This paper explores real-time fault location in a power transmission network using measurements of transients from sparsely-placed synchrophasors. The fault-location problem is abstracted to a statistical hypothesis-testing or detection problem, wherein the linearized dynamical models corresponding to different fault conditions must be distinguished in the face of fault-clearing and measurement uncertainty. A maximum a posteriori probability (MAP) detector is constructed. A strategy for real-time implementation of the fault-locator is discussed, which is based on pre-computation of detector parameters using state-estimator and contingency-analysis data, along with on-line collection of synchrophrasor data and implementation of the hypothesis test. Numerical case studies of the 11-Bus two area power system verify that the proposed fault-location algorithm can locate a faulted line accurately and quickly.","PeriodicalId":421766,"journal":{"name":"2014 North American Power Symposium (NAPS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2014.6965412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper explores real-time fault location in a power transmission network using measurements of transients from sparsely-placed synchrophasors. The fault-location problem is abstracted to a statistical hypothesis-testing or detection problem, wherein the linearized dynamical models corresponding to different fault conditions must be distinguished in the face of fault-clearing and measurement uncertainty. A maximum a posteriori probability (MAP) detector is constructed. A strategy for real-time implementation of the fault-locator is discussed, which is based on pre-computation of detector parameters using state-estimator and contingency-analysis data, along with on-line collection of synchrophrasor data and implementation of the hypothesis test. Numerical case studies of the 11-Bus two area power system verify that the proposed fault-location algorithm can locate a faulted line accurately and quickly.