CGS quality scalability for HEVC

Zhongbo Shi, Xiaoyan Sun, Jizheng Xu
{"title":"CGS quality scalability for HEVC","authors":"Zhongbo Shi, Xiaoyan Sun, Jizheng Xu","doi":"10.1109/MMSP.2011.6093816","DOIUrl":null,"url":null,"abstract":"Scalable video coding provides an efficient way to serve video contents at different quality levels. Based on the development of emerging High Efficiency Video Coding (HEVC), we propose two coarse granular scalable (CGS) video coding schemes here. In scheme A, we present a multi-loop solution in which the fully reconstructed base pictures are utilized in the enhancement layer prediction. By inserting the reconstructed base picture (BP) into the list of reference pictures of the collocated enhancement layer frame, we enable the coarse granular quality scalability of HEVC with very limited changes. On the other hand, scheme B supports single loop decoding. It contains three inter-layer predictions similar to the scalable extension of H.264/AVC. Compared to scheme A, it decreases the decoding complexity by avoiding the motion compensation, deblocking filtering (DF) and adaptive loop filtering (ALF) in the base layer. The effectiveness of our proposed two coding schemes is evaluated by comparing with single-layer coding and simulcast.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Scalable video coding provides an efficient way to serve video contents at different quality levels. Based on the development of emerging High Efficiency Video Coding (HEVC), we propose two coarse granular scalable (CGS) video coding schemes here. In scheme A, we present a multi-loop solution in which the fully reconstructed base pictures are utilized in the enhancement layer prediction. By inserting the reconstructed base picture (BP) into the list of reference pictures of the collocated enhancement layer frame, we enable the coarse granular quality scalability of HEVC with very limited changes. On the other hand, scheme B supports single loop decoding. It contains three inter-layer predictions similar to the scalable extension of H.264/AVC. Compared to scheme A, it decreases the decoding complexity by avoiding the motion compensation, deblocking filtering (DF) and adaptive loop filtering (ALF) in the base layer. The effectiveness of our proposed two coding schemes is evaluated by comparing with single-layer coding and simulcast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CGS质量可扩展性HEVC
可伸缩视频编码提供了一种有效的方式来提供不同质量水平的视频内容。基于新兴的高效视频编码(HEVC)技术的发展,本文提出了两种粗粒度可扩展(CGS)视频编码方案。在方案A中,我们提出了一种利用完全重构的基图进行增强层预测的多环方案。通过将重构的基础图(BP)插入到并置增强层帧的参考图列表中,实现了HEVC的粗粒度质量可扩展性,且变化非常有限。另一方面,方案B支持单循环解码。它包含三个层间预测,类似于H.264/AVC的可扩展扩展。与方案A相比,该方案避免了底层的运动补偿、去块滤波(DF)和自适应环路滤波(ALF),降低了译码复杂度。通过与单层编码和联播的比较,对两种编码方案的有效性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separation of speech sources using an Acoustic Vector Sensor Strategies for orca call retrieval to support collaborative annotation of a large archive Recognizing actions using salient features Region of interest determination using human computation Image super-resolution via feature-based affine transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1