RAPID PROTOTYPING OF PEAR DETECTION NEURAL NETWORK WITH YOLO ARCHITECTURE IN PHOTOGRAPHS

S. Kodors, Marks Sondors, G. Lācis, E. Rubauskis, I. Apeināns, Imants Zarembo
{"title":"RAPID PROTOTYPING OF PEAR DETECTION NEURAL NETWORK WITH YOLO ARCHITECTURE IN PHOTOGRAPHS","authors":"S. Kodors, Marks Sondors, G. Lācis, E. Rubauskis, I. Apeināns, Imants Zarembo","doi":"10.17770/etr2023vol1.7293","DOIUrl":null,"url":null,"abstract":"Fruit yield estimation and forecasting are essential processes for data-based decision-making in agribusiness to optimise fruit-growing and marketing operations. The yield forecasting is based on the application of historical data, which was collected in the result of periodic yield estimation. Meanwhile, the object detection methods and regression models are applied to calculate yield per tree. The application of powerful neural network architectures for rapid prototyping is a common approach of modern artificial intelligence engineering. Meanwhile, the most popular object detection solution is YOLO architecture. Our project team collected the dataset of fruiting pear tree photographs (Pear640) and trained YOLOv5m with mAP@0.5 95% and mAP@0.5:0.95 56%. The obtained results were compared with other YOLOv5-7.0 and YOLOv7 models and similar studies.","PeriodicalId":332103,"journal":{"name":"ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17770/etr2023vol1.7293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fruit yield estimation and forecasting are essential processes for data-based decision-making in agribusiness to optimise fruit-growing and marketing operations. The yield forecasting is based on the application of historical data, which was collected in the result of periodic yield estimation. Meanwhile, the object detection methods and regression models are applied to calculate yield per tree. The application of powerful neural network architectures for rapid prototyping is a common approach of modern artificial intelligence engineering. Meanwhile, the most popular object detection solution is YOLO architecture. Our project team collected the dataset of fruiting pear tree photographs (Pear640) and trained YOLOv5m with mAP@0.5 95% and mAP@0.5:0.95 56%. The obtained results were compared with other YOLOv5-7.0 and YOLOv7 models and similar studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有yolo结构的梨检测神经网络在照片中的快速原型
水果产量估计和预测是农业综合企业基于数据的决策的基本过程,以优化水果种植和销售业务。产量预测是基于对历史数据的应用,这些历史数据是在周期性产量估计的结果中收集的。同时,应用目标检测方法和回归模型计算单株产量。应用强大的神经网络架构进行快速原型设计是现代人工智能工程的常用方法。同时,最流行的目标检测方案是YOLO架构。我们的项目组收集了梨树结果照片数据集(Pear640),并以mAP@0.5 95%和mAP@0.5:0.95 56%训练YOLOv5m。将所得结果与其他YOLOv5-7.0和YOLOv7模型及类似研究进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
THE CHANGE OF CONTRAST IS INVESTIGATION OF 75 STEEL SAMPLES LASER MARKED WITH DIFFERENT MODES IMPROVEMENT OF OPERATIONAL PROCESSES BY ENSURING WORK SAFETY IN PRODUCTION THE USE OF VIRTUAL REALITY SOLUTIONS TO IMPROVE EDUCATIONAL EXPERIENCE FOR IT STUDENTS THE EFFECT OF AN INNOVATIVE FERTILIZER OF DIGESTATE AND WOOD ASH MIXTURES ON WINTER GARLIC PRODUCTIVITY OPTICAL GEOMETRIC DESIGN OF SMALL MODULAR CYLINDRICAL GEARS WITH ASYMMETRIC PROFILE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1