Combining dynamic texture and structural features for speaker identification

MiFor '10 Pub Date : 2010-10-29 DOI:10.1145/1877972.1877996
Guoying Zhao, Xiaohua Huang, Y. Gizatdinova, M. Pietikäinen
{"title":"Combining dynamic texture and structural features for speaker identification","authors":"Guoying Zhao, Xiaohua Huang, Y. Gizatdinova, M. Pietikäinen","doi":"10.1145/1877972.1877996","DOIUrl":null,"url":null,"abstract":"Visual information from captured video is important for speaker identification under noisy conditions that have background noise or cross talk among speakers. In this paper, we propose local spatiotemporal descriptors to represent and recognize speakers based solely on visual features. Spatiotemporal dynamic texture features of local binary patterns extracted from localized mouth regions are used for describing motion information in utterances, which can capture the spatial and temporal transition characteristics. Structural edge map features are extracted from the image frames for representing appearance characteristics. Combination of dynamic texture and structural features takes both motion and appearance together into account, providing the description ability for spatiotemporal development in speech. In our experiments on BANCA and XM2VTS databases the proposed method obtained promising recognition results comparing to the other features.","PeriodicalId":355677,"journal":{"name":"MiFor '10","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MiFor '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877972.1877996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Visual information from captured video is important for speaker identification under noisy conditions that have background noise or cross talk among speakers. In this paper, we propose local spatiotemporal descriptors to represent and recognize speakers based solely on visual features. Spatiotemporal dynamic texture features of local binary patterns extracted from localized mouth regions are used for describing motion information in utterances, which can capture the spatial and temporal transition characteristics. Structural edge map features are extracted from the image frames for representing appearance characteristics. Combination of dynamic texture and structural features takes both motion and appearance together into account, providing the description ability for spatiotemporal development in speech. In our experiments on BANCA and XM2VTS databases the proposed method obtained promising recognition results comparing to the other features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合动态纹理和结构特征进行说话人识别
在有背景噪声或说话人之间的串扰的嘈杂条件下,来自捕获视频的视觉信息对于说话人的识别是重要的。在本文中,我们提出了局部时空描述符,仅基于视觉特征来表示和识别说话人。利用从口腔局部区域提取的局部二值模式的时空动态纹理特征来描述话语中的运动信息,能够捕捉到话语的时空过渡特征。从图像帧中提取结构边缘映射特征来表示外观特征。动态纹理和结构特征的结合兼顾了运动和外观,为言语的时空发展提供了描述能力。在BANCA和XM2VTS数据库的实验中,与其他特征相比,该方法获得了较好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
When multimedia meets surveillance and forensics in people security Privacy preserving video surveillance using pedestrian tracking mechanism A game-theoretic system security design for the visible watermarking Videntifier" Forensic: large-scale video identification in practice Imputing human descriptions in semantic biometrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1