{"title":"Ordering rules and complexity reduction for fuzzy models","authors":"Ö. Ciftcioglu","doi":"10.1109/NAFIPS.2002.1018118","DOIUrl":null,"url":null,"abstract":"The selection of a set of key fuzzy rules from a given rule base is an important issue for effective fuzzy modeling. For this purpose the clustering and orthogonal transformation methods are the essential tools. The determination of clusters representing fuzzy rules with the consideration of output as well as input spaces is essential. To select orthogonal axes as principal components other than those determined by Gram-Schmidt provides a most compact representation of the input space R/sup p/ with the p premise variables. This approach in principle possesses two important features for fuzzy modeling. On one hand an enhanced effective rule selection, with the consideration of consequence, is obtained. On the other hand substantial computational saving relative to conventional orthogonal-least-squares approach or other conventional clustering methods is achieved.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The selection of a set of key fuzzy rules from a given rule base is an important issue for effective fuzzy modeling. For this purpose the clustering and orthogonal transformation methods are the essential tools. The determination of clusters representing fuzzy rules with the consideration of output as well as input spaces is essential. To select orthogonal axes as principal components other than those determined by Gram-Schmidt provides a most compact representation of the input space R/sup p/ with the p premise variables. This approach in principle possesses two important features for fuzzy modeling. On one hand an enhanced effective rule selection, with the consideration of consequence, is obtained. On the other hand substantial computational saving relative to conventional orthogonal-least-squares approach or other conventional clustering methods is achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊模型的排序规则与复杂度降低
从给定的规则库中选择一组关键模糊规则是实现有效模糊建模的一个重要问题。为此,聚类和正交变换方法是必不可少的工具。在考虑输出和输入空间的情况下确定表示模糊规则的聚类是至关重要的。选择正交轴作为主成分而不是由Gram-Schmidt确定的主成分,提供了具有p前提变量的输入空间R/sup p/的最紧凑的表示。这种方法原则上具有模糊建模的两个重要特征。一方面,在考虑后果的情况下,得到了一种增强的有效规则选择方法。另一方面,与传统的正交最小二乘方法或其他传统聚类方法相比,节省了大量的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy linear clustering for fabric selection from online database Fuzzy clustering in vision recognition applied in NAVI Fuzzy functions to select an optimal action in decision theory Fuzzy systems and soft O.R Conceptual fuzzy sets-based navigation system for Yahoo!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1