Methods and Algorithms for Simulation Modelling of Fractal Processes

Evgeniya Gospodinova
{"title":"Methods and Algorithms for Simulation Modelling of Fractal Processes","authors":"Evgeniya Gospodinova","doi":"10.55630/stem.2019.0107","DOIUrl":null,"url":null,"abstract":"The report presents methods and algorithms for simulation modelling of fractal processes. Fractal processes based on fractal Brownian motion, fractal Gaussian noise and, fractal Gaussian noise-wavelet transformation are simulated. Based on the performed comparative analysis of the algorithms for simulation modelling of fractal processes with respect to the accuracy parameter, it follows that the algorithms based on the models of fractal Gaussian noise and fractal Gaussian noise-wavelet transformation have the smallest relative error with respect to the Hurst parameter. The value of the Hurst parameter is one of the most important characteristics determining the degree of self-similarity of fractal processes. The considered algorithms based on these two models can be applied for modelling of physiological data, including cardiological data, because they have fractal properties.","PeriodicalId":183669,"journal":{"name":"Innovative STEM Education","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative STEM Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/stem.2019.0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The report presents methods and algorithms for simulation modelling of fractal processes. Fractal processes based on fractal Brownian motion, fractal Gaussian noise and, fractal Gaussian noise-wavelet transformation are simulated. Based on the performed comparative analysis of the algorithms for simulation modelling of fractal processes with respect to the accuracy parameter, it follows that the algorithms based on the models of fractal Gaussian noise and fractal Gaussian noise-wavelet transformation have the smallest relative error with respect to the Hurst parameter. The value of the Hurst parameter is one of the most important characteristics determining the degree of self-similarity of fractal processes. The considered algorithms based on these two models can be applied for modelling of physiological data, including cardiological data, because they have fractal properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分形过程仿真建模方法与算法
本文介绍了分形过程仿真建模的方法和算法。模拟了基于分形布朗运动、分形高斯噪声和分形高斯噪声-小波变换的分形过程。通过对分形过程仿真建模算法在精度参数上的比较分析,得出基于分形高斯噪声模型和基于分形高斯噪声-小波变换模型的算法在Hurst参数上的相对误差最小。赫斯特参数的取值是决定分形过程自相似程度的重要特征之一。基于这两种模型的考虑算法可以应用于生理数据的建模,包括心脏病数据,因为它们具有分形特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Printing in Education – Innovative Approaches to Learning through Modern 3D Technologies Student Attitudes Toward Basic Characteristics of Mobile Learning Mathematical Model of Forest Fire and Its Relationship with Simulations and Serious Games (SSG) Cyber Security to Android Mobile Devices Learning Computational Logic through Geometric Reasoning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1