Verifying Waste Disposal Practice Problems of Rural Areas In Indonesia Using the Apriori Algorithm

Aa Zezen Zaenal Abidin, M. Othman, Aslinda Hassan, Yuli Murdianingsih, Usep Tatang Suryadi, Zulkiflee Muslim
{"title":"Verifying Waste Disposal Practice Problems of Rural Areas In Indonesia Using the Apriori Algorithm","authors":"Aa Zezen Zaenal Abidin, M. Othman, Aslinda Hassan, Yuli Murdianingsih, Usep Tatang Suryadi, Zulkiflee Muslim","doi":"10.1109/ICIC54025.2021.9632987","DOIUrl":null,"url":null,"abstract":"Verifying a set of most frequent problems is essential before introducing practical solutions using new technology, processes, and practices. This study proposes a way to verify these problem sets. The main contribution of this paper is a method to verify a set of most frequent problems in waste disposal practices previously identified through a survey questionnaire, using Google Earth visualization and the Apriori algorithm. Google Earth is used to pinpoint the geographical locations of existing waste bins, illegal landfills, and people's houses. The distance between the waste bins and the residents' houses, sites of waste disposal by burning, and sites of waste disposal by dumping are then analyzed as a combination of the problems of waste disposal practices. Support, Confidence, multiplication between Support and Confidence, and lift ratio values are then calculated to obtain a combination of the most frequent problems sets. Next, the support value in the Apriori algorithm is compared with the FP-Growth method using Rapidminer. Results obtain support and thus verify data previously obtained from the survey. For a 2-itemset problem and a minimum support value of 0.1, 33% accuracy is obtained, while a 3-itemset problem returns 99% accuracy. We show that our method is useful in verifying data previously obtained from other sources.","PeriodicalId":189541,"journal":{"name":"2021 Sixth International Conference on Informatics and Computing (ICIC)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Sixth International Conference on Informatics and Computing (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC54025.2021.9632987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Verifying a set of most frequent problems is essential before introducing practical solutions using new technology, processes, and practices. This study proposes a way to verify these problem sets. The main contribution of this paper is a method to verify a set of most frequent problems in waste disposal practices previously identified through a survey questionnaire, using Google Earth visualization and the Apriori algorithm. Google Earth is used to pinpoint the geographical locations of existing waste bins, illegal landfills, and people's houses. The distance between the waste bins and the residents' houses, sites of waste disposal by burning, and sites of waste disposal by dumping are then analyzed as a combination of the problems of waste disposal practices. Support, Confidence, multiplication between Support and Confidence, and lift ratio values are then calculated to obtain a combination of the most frequent problems sets. Next, the support value in the Apriori algorithm is compared with the FP-Growth method using Rapidminer. Results obtain support and thus verify data previously obtained from the survey. For a 2-itemset problem and a minimum support value of 0.1, 33% accuracy is obtained, while a 3-itemset problem returns 99% accuracy. We show that our method is useful in verifying data previously obtained from other sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用Apriori算法验证印尼农村垃圾处理实践问题
在引入使用新技术、过程和实践的实际解决方案之前,验证一组最常见的问题是必不可少的。本研究提出了一种验证这些问题集的方法。本文的主要贡献是使用Google Earth可视化和Apriori算法验证以前通过调查问卷确定的废物处理实践中最常见的一组问题的方法。谷歌地球被用来精确定位现有垃圾箱、非法垃圾填埋场和人们房屋的地理位置。垃圾箱与居民住宅之间的距离、焚烧处理垃圾的地点、倾倒处理垃圾的地点,然后作为废物处理实践问题的组合进行分析。然后计算支持度、置信度、支持度和置信度之间的乘法以及提升比值,以获得最常见问题集的组合。接下来,使用Rapidminer将Apriori算法中的支持值与FP-Growth方法进行比较。结果获得支持,从而验证先前从调查中获得的数据。对于2项集问题,最小支持值为0.1,获得33%的准确率,而3项集问题返回99%的准确率。我们表明,我们的方法在验证以前从其他来源获得的数据是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of IoT adoption on Trucking Logistics in Various Industry in Indonesia Design of Blockchain Implementation for Supervision of Vaccine Distribution: Indonesia Case [ICIC 2021 Back Cover] Design and Simulation of Antipodal Vivaldi Antenna (AVA) AT 2.6 GHz For 5G Communication Optimation Classification of Chili Leaf Disease Using the Gray Level Co-occurrence Matrix (GLCM) and the Support Vector Machine (SVM) Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1