Passive tomography in coastal areas: A feasibility study of the Ushant front monitoring

O. Carrière, J. Hermand, Y. Stéphan
{"title":"Passive tomography in coastal areas: A feasibility study of the Ushant front monitoring","authors":"O. Carrière, J. Hermand, Y. Stéphan","doi":"10.1109/PASSIVE.2008.4786979","DOIUrl":null,"url":null,"abstract":"This work presents a feasibility test of acoustic data assimilation in a basic feature model of the Ushant front, west off Brittany, enabling the tracking of the principal characteristics of the front. Two monitoring applications are presented for tracking the tidal variations of the front and its seasonal variations (from April to July). The data assimilation method is based on ensemble Kalman filtering, enabling the process of the nonlinearity between front parameters and acoustic measurements. To prevent from the resolvability problem inherent to travel-time tomography method in shallow water, the proposed scheme considers full-field acoustic data and a normal-mode propagation model taking into account the seabottom properties. The complex field on a vertical array of receivers is assimilated in the front model to continuously correct the prediction of the front parameters. Simulation results demonstrate the feasibility of the method.","PeriodicalId":153349,"journal":{"name":"2008 New Trends for Environmental Monitoring Using Passive Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 New Trends for Environmental Monitoring Using Passive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PASSIVE.2008.4786979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work presents a feasibility test of acoustic data assimilation in a basic feature model of the Ushant front, west off Brittany, enabling the tracking of the principal characteristics of the front. Two monitoring applications are presented for tracking the tidal variations of the front and its seasonal variations (from April to July). The data assimilation method is based on ensemble Kalman filtering, enabling the process of the nonlinearity between front parameters and acoustic measurements. To prevent from the resolvability problem inherent to travel-time tomography method in shallow water, the proposed scheme considers full-field acoustic data and a normal-mode propagation model taking into account the seabottom properties. The complex field on a vertical array of receivers is assimilated in the front model to continuously correct the prediction of the front parameters. Simulation results demonstrate the feasibility of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沿海被动层析成像:乌山锋面监测的可行性研究
本文提出了在布列塔尼以西的Ushant锋面的基本特征模型中声学数据同化的可行性测试,从而能够跟踪锋面的主要特征。介绍了两种监测应用,用于跟踪锋面潮汐变化及其季节变化(4 - 7月)。数据同化方法基于集合卡尔曼滤波,实现了锋面参数与声学测量之间的非线性处理。为了避免浅水层析成像方法固有的可分辨性问题,该方案考虑了全场声学数据和考虑海底特性的正态传播模型。将垂直接收机阵列上的复杂场吸收到锋面模型中,对锋面参数的预测进行持续修正。仿真结果验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPS ISAR passive system characterization using Point Spread Function A comparison of interpolation processes: Applications to across-track scanning radiometers Acoustic detection of ice cracking events FFT-based sonar array beamforming without corner turning Flood-fill algorithms used for passive acoustic detection and tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1