Sensor noise modeling using the Skellam distribution: Application to the color edge detection

Youngbae Hwang, Jun-Sik Kim, In-So Kweon
{"title":"Sensor noise modeling using the Skellam distribution: Application to the color edge detection","authors":"Youngbae Hwang, Jun-Sik Kim, In-So Kweon","doi":"10.1109/CVPR.2007.383004","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the Skellam distribution as a sensor noise model for CCD or CMOS cameras. This is derived from the Poisson distribution of photons that determine the sensor response. We show that the Skellam distribution can be used to measure the intensity difference of pixels in the spatial domain, as well as in the temporal domain. In addition, we show that Skellam parameters are linearly related to the intensity of the pixels. This property means that the brighter pixels tolerate greater variation of intensity than the darker pixels. This enables us to decide automatically whether two pixels have different colors. We apply this modeling to detect the edges in color images. The resulting algorithm requires only a confidence interval for a hypothesis test, because it uses the distribution of image noise directly. More importantly, we demonstrate that without conventional Gaussian smoothing the noise model-based approach can automatically extract the fine details of image structures, such as edges and corners, independent of camera setting.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

In this paper, we introduce the Skellam distribution as a sensor noise model for CCD or CMOS cameras. This is derived from the Poisson distribution of photons that determine the sensor response. We show that the Skellam distribution can be used to measure the intensity difference of pixels in the spatial domain, as well as in the temporal domain. In addition, we show that Skellam parameters are linearly related to the intensity of the pixels. This property means that the brighter pixels tolerate greater variation of intensity than the darker pixels. This enables us to decide automatically whether two pixels have different colors. We apply this modeling to detect the edges in color images. The resulting algorithm requires only a confidence interval for a hypothesis test, because it uses the distribution of image noise directly. More importantly, we demonstrate that without conventional Gaussian smoothing the noise model-based approach can automatically extract the fine details of image structures, such as edges and corners, independent of camera setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Skellam分布的传感器噪声建模:在颜色边缘检测中的应用
本文介绍了Skellam分布作为CCD或CMOS相机的传感器噪声模型。这是由决定传感器响应的光子泊松分布得出的。我们表明,Skellam分布可以用来测量像素在空间域的强度差,以及在时域。此外,我们表明Skellam参数与像素的强度线性相关。这一特性意味着较亮的像素比较暗的像素能承受更大的强度变化。这使我们能够自动决定两个像素是否具有不同的颜色。我们将此模型应用于彩色图像的边缘检测。所得到的算法只需要一个置信区间进行假设检验,因为它直接使用了图像噪声的分布。更重要的是,我们证明了在没有传统高斯平滑的情况下,基于噪声模型的方法可以自动提取图像结构的精细细节,如边缘和角落,而不依赖于相机设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1