A. Ibrahim, Rania M. Hassan, Andrew E. Tawfiles, T. Ismail, M. Darweesh
{"title":"Real-Time Collision Warning System Based on Computer Vision Using Mono Camera","authors":"A. Ibrahim, Rania M. Hassan, Andrew E. Tawfiles, T. Ismail, M. Darweesh","doi":"10.1109/NILES50944.2020.9257941","DOIUrl":null,"url":null,"abstract":"This paper aims to help self-driving cars and autonomous vehicles systems to merge with the road environment safely and ensure the reliability of these systems in real life. Crash avoidance is a complex system that depends on many parameters. The forward-collision warning system is simplified into four main objectives: detecting cars, depth estimation, assigning cars into lanes (lane assign) and tracking technique. The presented work targets the software approach by using YOLO (You Only Look Once), which is a deep learning object detector network to detect cars with an accuracy of up to 93%. Therefore, apply a depth estimation algorithm that uses the output boundary box’s dimensions (width and height) from YOLO. These dimensions used to estimate the distance with an accuracy of 80.4%. In addition, a real-time computer vision algorithm is applied to assign cars into lanes. However, a tracking proposed algorithm is applied to evaluate the speed limit to keep the vehicle safe. Finally, the real-time system achieved for all algorithms with streaming speed 23 FPS (frame per second).","PeriodicalId":253090,"journal":{"name":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES50944.2020.9257941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper aims to help self-driving cars and autonomous vehicles systems to merge with the road environment safely and ensure the reliability of these systems in real life. Crash avoidance is a complex system that depends on many parameters. The forward-collision warning system is simplified into four main objectives: detecting cars, depth estimation, assigning cars into lanes (lane assign) and tracking technique. The presented work targets the software approach by using YOLO (You Only Look Once), which is a deep learning object detector network to detect cars with an accuracy of up to 93%. Therefore, apply a depth estimation algorithm that uses the output boundary box’s dimensions (width and height) from YOLO. These dimensions used to estimate the distance with an accuracy of 80.4%. In addition, a real-time computer vision algorithm is applied to assign cars into lanes. However, a tracking proposed algorithm is applied to evaluate the speed limit to keep the vehicle safe. Finally, the real-time system achieved for all algorithms with streaming speed 23 FPS (frame per second).