NetceRNA: An algorithm for construction of phenotype-specific regulation networks via competing endogenous RNAs

Mario Flores, Yufei Huang, Yidong Chen
{"title":"NetceRNA: An algorithm for construction of phenotype-specific regulation networks via competing endogenous RNAs","authors":"Mario Flores, Yufei Huang, Yidong Chen","doi":"10.1109/GENSIPS.2013.6735921","DOIUrl":null,"url":null,"abstract":"By using the competing endogenous RNA (ceRNA) concept, we implemented a web-based application TraceRNA. TraceRNA allows us to interactively construct a regulation network for a specific phenotype by using a disease-specific transcriptome data. In this work, we further extend the TraceRNA with a novel algorithm implementation where we examined the microRNA expression derived from same disease type. The proposed algorithm, NetceRNA, finds an optimized network representation under a certain phenotype context by iteratively perturbing the network and measuring the network configuration change with respect to the original ceRNA network. The resulting algorithm outputs an improved network together with a ranked list of genes and miRNAs which are characteristic of the specific phenotype. To illustrate the utility of NetceRNA, gene expression and microRNA expression data of breast cancer study from The Cancer Genome Atlas (TCGA) were used.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

By using the competing endogenous RNA (ceRNA) concept, we implemented a web-based application TraceRNA. TraceRNA allows us to interactively construct a regulation network for a specific phenotype by using a disease-specific transcriptome data. In this work, we further extend the TraceRNA with a novel algorithm implementation where we examined the microRNA expression derived from same disease type. The proposed algorithm, NetceRNA, finds an optimized network representation under a certain phenotype context by iteratively perturbing the network and measuring the network configuration change with respect to the original ceRNA network. The resulting algorithm outputs an improved network together with a ranked list of genes and miRNAs which are characteristic of the specific phenotype. To illustrate the utility of NetceRNA, gene expression and microRNA expression data of breast cancer study from The Cancer Genome Atlas (TCGA) were used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NetceRNA:一种通过竞争内源性rna构建表型特异性调控网络的算法
通过使用竞争性内源性RNA (ceRNA)概念,我们实现了基于web的应用程序TraceRNA。TraceRNA允许我们通过使用疾病特异性转录组数据来交互式地构建特定表型的调节网络。在这项工作中,我们通过一种新的算法实现进一步扩展了TraceRNA,我们检查了来自相同疾病类型的microRNA表达。提出的算法NetceRNA通过迭代扰动网络并测量相对于原始ceRNA网络的网络配置变化,找到特定表型上下文下的优化网络表示。所得到的算法输出一个改进的网络以及具有特定表型特征的基因和mirna的排序列表。为了说明NetceRNA的作用,我们使用了来自癌症基因组图谱(TCGA)的乳腺癌研究的基因表达和microRNA表达数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compromised intervention policies for phenotype alteration SeqBBS: A change-point model based algorithm and R package for searching CNV regions via the ratio of sequencing reads Optimal Bayesian MMSE estimation of the coefficient of determination for discrete prediction Boolean model to experimental validation: A preliminary attempt Inference of genetic regulatory networks with unknown covariance structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1