{"title":"Preparation and Characterization of Gd1-xSrxAlO3 Cathode for Solid Oxide Fuel Cell","authors":"M. Rajasekhar, N. Kalaivani","doi":"10.18689/MJNN-1000121","DOIUrl":null,"url":null,"abstract":"Published by Madridge Publishers Abstract Gd1-xSrxAlO3 (0 ≤ x ≤ 0.5) cathode materials are synthesized with Gd(NO3)3, Sr(NO3)2, Al(NO3)3, and aspartic acid (fuel) by assisted combustion method with heating at 550°C for 6 hours. The surface morphology of the synthesized crystalline powder is characterized by Scanning Electron Microscopy (SEM). Thus, particle size and porosity were determined. The synthesis and crystallization are followed by thermochemical techniques (TGA/DTA) studies. The synthesized materials showed reasonable electrical conductivity. These results indicate that assisted combustion method is a promising method to prepare nanocrystalline Gd1-xSrxAlO3 for solid oxide fuel cell.","PeriodicalId":406289,"journal":{"name":"Madridge Journal of Nanotechnology & Nanoscience","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Madridge Journal of Nanotechnology & Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18689/MJNN-1000121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Published by Madridge Publishers Abstract Gd1-xSrxAlO3 (0 ≤ x ≤ 0.5) cathode materials are synthesized with Gd(NO3)3, Sr(NO3)2, Al(NO3)3, and aspartic acid (fuel) by assisted combustion method with heating at 550°C for 6 hours. The surface morphology of the synthesized crystalline powder is characterized by Scanning Electron Microscopy (SEM). Thus, particle size and porosity were determined. The synthesis and crystallization are followed by thermochemical techniques (TGA/DTA) studies. The synthesized materials showed reasonable electrical conductivity. These results indicate that assisted combustion method is a promising method to prepare nanocrystalline Gd1-xSrxAlO3 for solid oxide fuel cell.