Robust neural predictor for noisy chaotic time series prediction

Min Han, Xinying Wang
{"title":"Robust neural predictor for noisy chaotic time series prediction","authors":"Min Han, Xinying Wang","doi":"10.1109/IJCNN.2013.6706996","DOIUrl":null,"url":null,"abstract":"A robust neural predictor is designed for noisy chaotic time series prediction in this paper. The main idea is based on the consideration of the bounded uncertainty in predictor input, and it is a typical Errors-in-Variables problem. The robust design is based on the linear-in-parameters ESN (Echo State Network) model. By minimizing the worst-case residual induced by the bounded perturbations in the echo state variables, the robust predictor is obtained in coping with the uncertainty in the noisy time series. In the experiment, the classical Mackey-Glass 84-step benchmark prediction task is investigated. The prediction performance is studied for the nominal and robust design of ESN predictors.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A robust neural predictor is designed for noisy chaotic time series prediction in this paper. The main idea is based on the consideration of the bounded uncertainty in predictor input, and it is a typical Errors-in-Variables problem. The robust design is based on the linear-in-parameters ESN (Echo State Network) model. By minimizing the worst-case residual induced by the bounded perturbations in the echo state variables, the robust predictor is obtained in coping with the uncertainty in the noisy time series. In the experiment, the classical Mackey-Glass 84-step benchmark prediction task is investigated. The prediction performance is studied for the nominal and robust design of ESN predictors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声混沌时间序列鲁棒神经预测器
本文设计了一种鲁棒神经预测器,用于噪声混沌时间序列的预测。其主要思想是考虑了预测器输入的有界不确定性,是一个典型的变量误差问题。鲁棒性设计基于参数线性回声状态网络(ESN)模型。通过最小化回波状态变量中有界扰动引起的最坏情况残差,获得了鲁棒预测器,以应对噪声时间序列中的不确定性。在实验中,研究了经典的Mackey-Glass 84步基准预测任务。研究了回声状态网络预测器的标称设计和稳健设计的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An SVM-based approach for stock market trend prediction Spiking neural networks for financial data prediction Improving multi-label classification performance by label constraints Biologically inspired intensity and range image feature extraction A location-independent direct link neuromorphic interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1