Probabilistic Part-Of-Speech Determination for Efficient English-Korean Machine Translation

Sung-Dong Kim, Il Kim
{"title":"Probabilistic Part-Of-Speech Determination for Efficient English-Korean Machine Translation","authors":"Sung-Dong Kim, Il Kim","doi":"10.3745/KIPSTB.2010.17B.6.459","DOIUrl":null,"url":null,"abstract":"Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2010.17B.6.459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效英韩机器翻译的词性概率确定
自然语言处理中存在一些歧义问题,英韩机器翻译尤其包含了在翻译的每个步骤中需要解决的歧义问题。本文主要研究解决英语单词词性歧义问题,以提高英语分析的效率,为开发实用的英韩机器翻译系统做出努力。为了提高英语分析的效率,词性确定必须与机器翻译系统相结合,快速准确。本文提出了词性确定的概率模型。我们使用Penn树库语料库构建概率模型。在实验中,我们展示了词性确定模型的性能,并通过提出的词性确定方法提高了机器翻译系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity Morpheme Recovery Based on Naïve Bayes Model Automatic Identification of the Lumen Border in Intravascular Ultrasound Images Retrieval Model Based on Word Translation Probabilities and the Degree of Association of Query Concept Multidimensional Optimization Model of Music Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1