Computing the proximity operator of the ℓp norm with 0 < p < 1

Feishe Chen, Lixin Shen, B. Suter
{"title":"Computing the proximity operator of the ℓp norm with 0 < p < 1","authors":"Feishe Chen, Lixin Shen, B. Suter","doi":"10.1049/iet-spr.2015.0244","DOIUrl":null,"url":null,"abstract":"Sparse modelling with the l p norm of 0 ≤ p ≤ 1 requires the availability of the proximity operator of the l p norm. The proximity operators of the l0 and l1 norms are the well-known hard- and soft-thresholding estimators, respectively. In this study, the authors give a complete study on the properties of the proximity operator of the l p norm. Based on these properties, explicit formulas of the proximity operators of the l1/2 norm and l2/3 norm are derived with simple proofs; for other values of p, an iterative Newton's method is developed to compute the proximity operator of the l p norm by fully exploring the available proximity operators of the l0, l1/2, l2/3, and l1 norms. As applications, the proximity operator of the l p norm with 0 ≤ p ≤ 1 is applied to the l p -regularisation for compressive sensing and image restoration.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Sparse modelling with the l p norm of 0 ≤ p ≤ 1 requires the availability of the proximity operator of the l p norm. The proximity operators of the l0 and l1 norms are the well-known hard- and soft-thresholding estimators, respectively. In this study, the authors give a complete study on the properties of the proximity operator of the l p norm. Based on these properties, explicit formulas of the proximity operators of the l1/2 norm and l2/3 norm are derived with simple proofs; for other values of p, an iterative Newton's method is developed to compute the proximity operator of the l p norm by fully exploring the available proximity operators of the l0, l1/2, l2/3, and l1 norms. As applications, the proximity operator of the l p norm with 0 ≤ p ≤ 1 is applied to the l p -regularisation for compressive sensing and image restoration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算0 < p < 1的p范数的接近算子
l p范数为0≤p≤1的稀疏建模要求l p范数的邻近算子的可用性。10范数和l1范数的接近算子分别是众所周知的硬阈值估计和软阈值估计。本文对l p范数的接近算子的性质进行了较为全面的研究。基于这些性质,导出了l1/2范数和l2/3范数的邻近算子的显式公式,并给出了简单的证明;对于p的其他值,通过充分探索10、l1/2、l2/3和l1范数的可用接近算子,开发了迭代牛顿法来计算l1范数的接近算子。作为应用,将l p范数0≤p≤1的接近算子应用于l p -正则化压缩感知和图像恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An order insensitive optimal generalised sequential fusion estimation for stochastic uncertain multi-sensor systems with correlated noise Spatial Multiplexing in Near Field MIMO Channels with Reconfigurable Intelligent Surfaces An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy Advances in image processing using machine learning techniques An unsupervised monocular image depth prediction algorithm using Fourier domain analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1