Effects of Correlated Noise on the Performance of Persistence Based Dynamic State Detection Methods

J. Tempelman, Audun D. Myers, J. Scruggs, Firas A. Khasawneh
{"title":"Effects of Correlated Noise on the Performance of Persistence Based Dynamic State Detection Methods","authors":"J. Tempelman, Audun D. Myers, J. Scruggs, Firas A. Khasawneh","doi":"10.1115/detc2020-22592","DOIUrl":null,"url":null,"abstract":"\n The ability to characterize the state of dynamic systems has been a pertinent task in the time series analysis community. Traditional measures such as Lyapunov exponents are often times difficult to recover from noisy data, especially if the dimensionality of the system is not known. More recent binary and network based testing methods have delivered promising results for unknown deterministic systems, however noise injected into a periodic signal leads to false positives. Recently, we showed the advantage of using persistent homology as a tool for achieving dynamic state detection for systems with no known model and showed its robustness to white Gaussian noise. In this work, we explore the robustness of the persistence based methods to the influence of colored noise and show that colored noise processes of the form 1/ f α lead to false positive diagnostic at lower signal to noise ratios for α < 0.","PeriodicalId":398186,"journal":{"name":"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ability to characterize the state of dynamic systems has been a pertinent task in the time series analysis community. Traditional measures such as Lyapunov exponents are often times difficult to recover from noisy data, especially if the dimensionality of the system is not known. More recent binary and network based testing methods have delivered promising results for unknown deterministic systems, however noise injected into a periodic signal leads to false positives. Recently, we showed the advantage of using persistent homology as a tool for achieving dynamic state detection for systems with no known model and showed its robustness to white Gaussian noise. In this work, we explore the robustness of the persistence based methods to the influence of colored noise and show that colored noise processes of the form 1/ f α lead to false positive diagnostic at lower signal to noise ratios for α < 0.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相关噪声对基于持久性的动态状态检测方法性能的影响
表征动态系统状态的能力一直是时间序列分析界的一个相关任务。传统的测量方法,如李雅普诺夫指数,往往很难从噪声数据中恢复,特别是如果系统的维度是未知的。最近基于二进制和网络的测试方法已经为未知的确定性系统提供了有希望的结果,但是注入周期信号的噪声会导致误报。最近,我们展示了使用持久同调作为工具来实现未知模型系统的动态状态检测的优势,并展示了其对高斯白噪声的鲁棒性。在这项工作中,我们探讨了基于持久性的方法对彩色噪声影响的鲁棒性,并表明形式为1/ f α的彩色噪声过程在较低的信噪比下导致假阳性诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HPC FEM Calculations for Damping Estimation of Bladed Disk With Dry-Friction Contacts Design and Amplitude Dependence of Resonance Frequency of Origami-Inspired Vibration Isolators With Quasi-Zero-Stiffness Characteristic Investigating How Additively Manufactured Parts in Traditionally Manufactured Systems Affect the System Dynamic Properties Electromechanical Diode: Acoustic Non-Reciprocity in Weakly Nonlinear Metamaterial With Electromechanical Resonators Superharmonic Resonance of Third Order of Electrostatically Actuated MEMS Circular Plates: Effect of AC Frequency on Voltage Response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1