Decomposing soil and vegetation contributions in polarimetric L- and P- band SAR observations

S. H. Alemohammad, T. Jagdhuber, M. Moghaddam, D. Entekhabi
{"title":"Decomposing soil and vegetation contributions in polarimetric L- and P- band SAR observations","authors":"S. H. Alemohammad, T. Jagdhuber, M. Moghaddam, D. Entekhabi","doi":"10.1109/IGARSS.2016.7730970","DOIUrl":null,"url":null,"abstract":"Microwave-based retrieval of soil moisture in vegetated areas have uncertainties due the sensitivity of the signal to vegetation structure and dielectric constant. In this study, we propose a framework for developing a joint active L-band and active P-band retrieval algorithm to decrease the retrieval uncertainties. The algorithm focuses on the decomposition of soil, vegetation and dihedral components to compare the observations from the two frequencies.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Microwave-based retrieval of soil moisture in vegetated areas have uncertainties due the sensitivity of the signal to vegetation structure and dielectric constant. In this study, we propose a framework for developing a joint active L-band and active P-band retrieval algorithm to decrease the retrieval uncertainties. The algorithm focuses on the decomposition of soil, vegetation and dihedral components to compare the observations from the two frequencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极化L波段和P波段SAR观测中土壤和植被的分解贡献
植被区土壤水分的微波反演信号对植被结构和介电常数的敏感性存在不确定性。在本研究中,我们提出了一个框架来开发联合有源l波段和有源p波段检索算法,以减少检索的不确定性。该算法侧重于土壤、植被和二面体分量的分解,以比较两个频率的观测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of assimilated SMOS Soil Moisture data for US cropland Soil Moisture monitoring Deployment and performance of the NASA D3R during the GPM OLYMPEx field campaign Building blocks for semiempirical models for forest parameter extraction from interferometric X-band SAR images Synoptic capabilities of the GNSS-R interferometric technique with the SPIR instrument Microwave brightness temperature of snow: Observations and simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1