Supervised Machine Learning based Classification of Video Traffic Types

E. Grabs, E. Petersons, A. Ipatovs, Dmitrijs Chulkovs
{"title":"Supervised Machine Learning based Classification of Video Traffic Types","authors":"E. Grabs, E. Petersons, A. Ipatovs, Dmitrijs Chulkovs","doi":"10.1109/IEEECONF49502.2020.9141625","DOIUrl":null,"url":null,"abstract":"The main topic of the article is accuracy evaluation of supervised machine learning algorithms performance applied to real network traffic data. The main task to be solved by supervised learning is classification of video traffic type - streaming (real-time) video or on-demand video (a record). The experiment has been performed for the same video fragment with data filtering and without it. The results have been summarized in form of tables with accuracy assessment for multiple commonly used supervised machine learning algorithms.","PeriodicalId":186085,"journal":{"name":"2020 24th International Conference Electronics","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Conference Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49502.2020.9141625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The main topic of the article is accuracy evaluation of supervised machine learning algorithms performance applied to real network traffic data. The main task to be solved by supervised learning is classification of video traffic type - streaming (real-time) video or on-demand video (a record). The experiment has been performed for the same video fragment with data filtering and without it. The results have been summarized in form of tables with accuracy assessment for multiple commonly used supervised machine learning algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监督机器学习的视频流量类型分类
本文的主要主题是监督机器学习算法应用于实际网络流量数据的准确性评估。监督学习要解决的主要任务是视频流量类型的分类——流(实时)视频或点播视频(记录)。对同一视频片段进行了数据滤波和不进行数据滤波的实验。结果以表格的形式总结,并对多种常用的有监督机器学习算法进行了准确性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-Border Coordination between International Mobile Telecommunications System and Aeronautical Telemetry System in the 1429–1518 MHz Frequency Band Modelling Corona Discharge Characteristic in Electricity Transmission Lines for Fault Detection System MQTT Algebraic Formal Modelling Using ACP Modelling a Leaf and Spine Topology for VM Migration in Fog Computing Propagation Losses Algorithm Development for Wireless Sensor Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1