On optimization of polling policy represented by neural network

Y. Matsumoto
{"title":"On optimization of polling policy represented by neural network","authors":"Y. Matsumoto","doi":"10.1145/190314.190331","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of scheduling a server in a polling system with multiple queues and complete information. We represent the polling policy by a neural network; namely, given the number of waiting customers in each queue, the server determines next queue he should visit according to the output of the neural network. By using the simulated annealing method, we improve the neural polling policy in such a way that the mean delay of customers is minimized. Numerical results show that the present approach is especially valid for asymmetric polling systems whose analytical optimization is considered intractable.","PeriodicalId":142337,"journal":{"name":"Proceedings of the conference on Communications architectures, protocols and applications","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference on Communications architectures, protocols and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/190314.190331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper deals with the problem of scheduling a server in a polling system with multiple queues and complete information. We represent the polling policy by a neural network; namely, given the number of waiting customers in each queue, the server determines next queue he should visit according to the output of the neural network. By using the simulated annealing method, we improve the neural polling policy in such a way that the mean delay of customers is minimized. Numerical results show that the present approach is especially valid for asymmetric polling systems whose analytical optimization is considered intractable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的轮询策略优化研究
研究了具有完整信息的多队列轮询系统中的服务器调度问题。我们用神经网络表示轮询策略;即,给定每个队列中等待的客户数量,服务器根据神经网络的输出确定下一个应该访问的队列。通过模拟退火方法,改进了神经轮询策略,使客户的平均延迟最小。数值结果表明,该方法特别适用于难以进行解析优化的非对称轮询系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Making greed work in networks: a game-theoretic analysis of switch service disciplines Wide-area traffic: the failure of Poisson modeling Proceedings of the conference on Communications architectures, protocols and applications Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers A methodology for designing communication protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1