H. Anzt, J. Dongarra, Goran Flegar, Thomas Grützmacher
{"title":"Variable-Size Batched Condition Number Calculation on GPUs","authors":"H. Anzt, J. Dongarra, Goran Flegar, Thomas Grützmacher","doi":"10.1109/CAHPC.2018.8645907","DOIUrl":null,"url":null,"abstract":"We present a kernel that is designed to quickly compute the condition number of a large collection of tiny matrices on a graphics processing unit (GPU). The matrices can differ in size and the process integrates the use of pivoting to ensure a numerically-stable matrix inversion. The performance assessment reveals that, in double precision arithmetic, the new GPU kernel achieves up to 550 GFLOPs (billions of floating-point operations per second) and 800 GFLOPs on NVIDIA's P100 and V100 GPUs, respectively. The results also demonstrate a considerable speed-up with respect to a workflow that computes the condition number via launching a set of four batched kernels. In addition, we present a variable-size batched kernel for the computation of the matrix infinity norm. We show that this memory-bound kernel achieves up to 90% of the sustainable peak bandwidth.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a kernel that is designed to quickly compute the condition number of a large collection of tiny matrices on a graphics processing unit (GPU). The matrices can differ in size and the process integrates the use of pivoting to ensure a numerically-stable matrix inversion. The performance assessment reveals that, in double precision arithmetic, the new GPU kernel achieves up to 550 GFLOPs (billions of floating-point operations per second) and 800 GFLOPs on NVIDIA's P100 and V100 GPUs, respectively. The results also demonstrate a considerable speed-up with respect to a workflow that computes the condition number via launching a set of four batched kernels. In addition, we present a variable-size batched kernel for the computation of the matrix infinity norm. We show that this memory-bound kernel achieves up to 90% of the sustainable peak bandwidth.