Scaling Benchmark of ESyS-Particle for Elastic Wave Propagation Simulations

D. Weatherley, V. Boros, W. Hancock, S. Abe
{"title":"Scaling Benchmark of ESyS-Particle for Elastic Wave Propagation Simulations","authors":"D. Weatherley, V. Boros, W. Hancock, S. Abe","doi":"10.1109/eScience.2010.40","DOIUrl":null,"url":null,"abstract":"The Discrete Element Method (DEM) is a popular particle-based numerical method for simulating geophysical processes including earthquakes, rock breakage and granular flow. Often simulations consisting of thousands of particles have insufficient resolution to reproduce the micromechanics of many geophysical processes, requiring millions of particles in some instances. The high computational expense of the DEM precludes execution of such problem sizes on desktop PCs. ESyS-Particle is a parallel implementation of the DEM, designed for execution on cluster supercomputers. Three-dimensional spatial domain decomposition is implemented using the MPI for interprocess communications. We present results of scaling benchmarks in which problem size per worker remains constant. As the number of workers increases from 27 to 1000, execution time remains near-constant, permitting simulations of 8.7M particles in approximately the same real time as simulations comprising 240K particles.","PeriodicalId":441488,"journal":{"name":"2010 IEEE Sixth International Conference on e-Science","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Sixth International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2010.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The Discrete Element Method (DEM) is a popular particle-based numerical method for simulating geophysical processes including earthquakes, rock breakage and granular flow. Often simulations consisting of thousands of particles have insufficient resolution to reproduce the micromechanics of many geophysical processes, requiring millions of particles in some instances. The high computational expense of the DEM precludes execution of such problem sizes on desktop PCs. ESyS-Particle is a parallel implementation of the DEM, designed for execution on cluster supercomputers. Three-dimensional spatial domain decomposition is implemented using the MPI for interprocess communications. We present results of scaling benchmarks in which problem size per worker remains constant. As the number of workers increases from 27 to 1000, execution time remains near-constant, permitting simulations of 8.7M particles in approximately the same real time as simulations comprising 240K particles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性波传播模拟中ESyS-Particle的尺度基准
离散元法(DEM)是一种流行的基于粒子的数值方法,用于模拟地震、岩石破碎和颗粒流动等地球物理过程。通常,由数千个粒子组成的模拟不足以再现许多地球物理过程的微观力学,在某些情况下需要数百万个粒子。DEM的高计算费用阻碍了在台式pc上执行这种规模的问题。ESyS-Particle是DEM的并行实现,设计用于在集群超级计算机上执行。利用MPI实现了三维空间域分解,实现了进程间通信。我们给出了每个工作人员的问题大小保持不变的可伸缩性基准测试的结果。当工人的数量从27个增加到1000个时,执行时间几乎保持不变,允许模拟8.7万个粒子的实时时间与模拟240K个粒子的实时时间大致相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Semantic eScience Platform for Chemistry Applying Data Mining and Mathematical Morphology to Borehole Data Coming from Exploration and Mining Industry Electrochemical Parameter Optimization Using Scientific Workflows ObsDB: A System for Uniformly Storing and Querying Heterogeneous Observational Data The UNICORE Rich Client: Facilitating the Automated Execution of Scientific Workflows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1