Determining Fall direction and severity using SVMs

A. Syed, Anup Kumar, Daniel Sierra-Sosa, Adel Said Elmaghraby
{"title":"Determining Fall direction and severity using SVMs","authors":"A. Syed, Anup Kumar, Daniel Sierra-Sosa, Adel Said Elmaghraby","doi":"10.1109/ISSPIT51521.2020.9408879","DOIUrl":null,"url":null,"abstract":"Fall detection has been an important consideration in the field of human activity recognition and has garnered significant interest from researchers. A typical aim within fall detection systems is the determination of whether a fall has occurred or not. However, less attention has been provided to the problem of fall direction detection and severity. In this paper, we experiment with the detection of direction and severity in falls using the SisFall dataset. We perform this by using a combination of time and frequency domain features on inertial measurement sensor values along with a Support Vector Machine classifier. We are able to achieve promising results for the considered task.","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fall detection has been an important consideration in the field of human activity recognition and has garnered significant interest from researchers. A typical aim within fall detection systems is the determination of whether a fall has occurred or not. However, less attention has been provided to the problem of fall direction detection and severity. In this paper, we experiment with the detection of direction and severity in falls using the SisFall dataset. We perform this by using a combination of time and frequency domain features on inertial measurement sensor values along with a Support Vector Machine classifier. We are able to achieve promising results for the considered task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用支持向量机确定坠落方向和严重程度
跌倒检测一直是人类活动识别领域的一个重要问题,引起了研究人员的极大兴趣。跌落检测系统的一个典型目标是确定是否发生了跌落。然而,对跌倒方向检测和严重程度的研究却很少。在本文中,我们使用SisFall数据集对跌倒的方向和严重程度进行了检测。我们通过结合惯性测量传感器值的时域和频域特征以及支持向量机分类器来实现这一点。我们能够在考虑的任务中取得有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance study of CFD Pressure-based solver on HPC Efficient Topology of Multilevel Clustering Algorithm for Underwater Sensor Networks Machine learning applied to diabetes dataset using Quantum versus Classical computation DOAV Estimation Using L-Shaped Antenna Array Configuration Sentiment analysis using an ensemble approach of BiGRU model: A case study of AMIS tweets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1