Large dataset summarization with automatic parameter optimization and parallel processing for outlier detection

Zhaoyu Shou, Simin Li
{"title":"Large dataset summarization with automatic parameter optimization and parallel processing for outlier detection","authors":"Zhaoyu Shou, Simin Li","doi":"10.1109/FSKD.2017.8393136","DOIUrl":null,"url":null,"abstract":"As one of the most important research problems of data analytics and data mining, outlier detection from large datasets has drawn many research attentions in recent years. In this paper, we investigate the interesting research problem of summarizing large datasets for supporting efficient local outlier detection. To summarize large datasets, efficient summarization algorithms are proposed which produce a highly compact summary of the original dataset which can be applied to detect local outliers from future similar datasets. A novel automatic parameter optimization method is proposed to produce the optimal setup of the key parameters used in the summarization algorithm. Parallel processing methods are also proposed to accelerate significantly the summarization process. The experimental evaluation results demonstrate that our proposed algorithms are highly scalable for large datasets and effective in producing dataset summary for local outlier detection.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the most important research problems of data analytics and data mining, outlier detection from large datasets has drawn many research attentions in recent years. In this paper, we investigate the interesting research problem of summarizing large datasets for supporting efficient local outlier detection. To summarize large datasets, efficient summarization algorithms are proposed which produce a highly compact summary of the original dataset which can be applied to detect local outliers from future similar datasets. A novel automatic parameter optimization method is proposed to produce the optimal setup of the key parameters used in the summarization algorithm. Parallel processing methods are also proposed to accelerate significantly the summarization process. The experimental evaluation results demonstrate that our proposed algorithms are highly scalable for large datasets and effective in producing dataset summary for local outlier detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自动参数优化和并行处理的大数据汇总异常点检测
作为数据分析和数据挖掘中最重要的研究问题之一,大数据集的离群点检测近年来受到了很多研究的关注。在本文中,我们研究了一个有趣的研究问题,即汇总大型数据集以支持高效的局部离群点检测。为了总结大型数据集,提出了一种高效的总结算法,该算法可以产生原始数据集的高度紧凑的摘要,该摘要可以用于从未来的类似数据集中检测局部异常值。提出了一种新的自动参数优化方法,对摘要算法中使用的关键参数进行最优设置。并行处理方法也被提出,以显著加快总结过程。实验结果表明,本文提出的算法对于大数据集具有高度可扩展性,并且能够有效地生成用于局部离群点检测的数据集摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space syntax and time distance based analysis on the influences of the subways to the pubic traffic accessibility in Nanchang city Designing fuzzy apparatus to model dyslexic individual symptoms for clinical use A kNN classifier optimized by P systems Research on optimal operation of cascade hydropower station based on improved biogeography-based optimization algorithm An estimation algorithm of time-varying channels in the OFDM communication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1