{"title":"Model-based object tracking in cluttered scenes with occlusions","authors":"F. Jurie","doi":"10.1109/IROS.1997.655114","DOIUrl":null,"url":null,"abstract":"We propose an efficient method for tracking 3D modelled objects in cluttered scenes. Rather than tracking objects in the image, our approach relies on the object recognition aspect of tracking. Candidate matches between image and model features define volumes in the space of transformations. The volumes of the pose space satisfying the maximum number of correspondences are those that best align the model with the image. Object motion defines a trajectory in the pose space. We give some results showing that the presented method allows tracking of objects even when they are totally occluded for a short while, without supposing any motion model and with a low computational cost (below 200 ms per frame on a basic workstation). Furthermore, this algorithm can also be used to initialize the tracking.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.655114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We propose an efficient method for tracking 3D modelled objects in cluttered scenes. Rather than tracking objects in the image, our approach relies on the object recognition aspect of tracking. Candidate matches between image and model features define volumes in the space of transformations. The volumes of the pose space satisfying the maximum number of correspondences are those that best align the model with the image. Object motion defines a trajectory in the pose space. We give some results showing that the presented method allows tracking of objects even when they are totally occluded for a short while, without supposing any motion model and with a low computational cost (below 200 ms per frame on a basic workstation). Furthermore, this algorithm can also be used to initialize the tracking.