Efficient flow scheduling in distributed deep learning training with echelon formation

Rui Pan, Yiming Lei, Jialong Li, Zhiqiang Xie, Binhang Yuan, Yiting Xia
{"title":"Efficient flow scheduling in distributed deep learning training with echelon formation","authors":"Rui Pan, Yiming Lei, Jialong Li, Zhiqiang Xie, Binhang Yuan, Yiting Xia","doi":"10.1145/3563766.3564096","DOIUrl":null,"url":null,"abstract":"This paper discusses why flow scheduling does not apply to distributed deep learning training and presents EchelonFlow, the first network abstraction to bridge the gap. EchelonFlow deviates from the common belief that semantically related flows should finish at the same time. We reached the key observation, after extensive workflow analysis of diverse training paradigms, that distributed training jobs observe strict computation patterns, which may consume data at different times. We devise a generic method to model the drastically different computation patterns across training paradigms, and formulate EchelonFlow to regulate flow finish times accordingly. Case studies of mainstream training paradigms under EchelonFlow demonstrate the expressiveness of the abstraction, and our system sketch suggests the feasibility of an EchelonFlow scheduling system.","PeriodicalId":339381,"journal":{"name":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563766.3564096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses why flow scheduling does not apply to distributed deep learning training and presents EchelonFlow, the first network abstraction to bridge the gap. EchelonFlow deviates from the common belief that semantically related flows should finish at the same time. We reached the key observation, after extensive workflow analysis of diverse training paradigms, that distributed training jobs observe strict computation patterns, which may consume data at different times. We devise a generic method to model the drastically different computation patterns across training paradigms, and formulate EchelonFlow to regulate flow finish times accordingly. Case studies of mainstream training paradigms under EchelonFlow demonstrate the expressiveness of the abstraction, and our system sketch suggests the feasibility of an EchelonFlow scheduling system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于梯队编队的分布式深度学习训练的高效流调度
本文讨论了为什么流调度不适用于分布式深度学习训练,并提出了EchelonFlow,这是第一个弥合这一差距的网络抽象。EchelonFlow偏离了通常认为语义相关的流应该同时完成的观点。在对各种训练范例进行了广泛的工作流程分析之后,我们得出了一个关键的观察结果,即分布式训练作业遵循严格的计算模式,这些模式可能在不同的时间消耗数据。我们设计了一种通用的方法来模拟不同训练范式的计算模式,并制定了相应的EchelonFlow来调节流程完成时间。通过对EchelonFlow下主流培训模式的案例研究,证明了该抽象的可表达性,并且我们的系统草图表明了一个EchelonFlow调度系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The decoupling principle: a practical privacy framework Towards dual-band reconfigurable metasurfaces for satellite networking Sidecar: in-network performance enhancements in the age of paranoid transport protocols The internet of things in a laptop: rapid prototyping for IoT applications with digibox Making links on your web pages last longer than you
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1