Performance queries for architecture-level performance models

F. Gorsler, Fabian Brosig, Samuel Kounev
{"title":"Performance queries for architecture-level performance models","authors":"F. Gorsler, Fabian Brosig, Samuel Kounev","doi":"10.1145/2568088.2568100","DOIUrl":null,"url":null,"abstract":"Over the past few decades, many performance modeling formalisms and prediction techniques for software architectures have been developed in the performance engineering community. However, using a performance model to predict the performance of a software system normally requires extensive experience with the respective modeling formalism and involves a number of complex and time consuming manual steps. In this paper, we propose a generic declarative interface to performance prediction techniques to simplify and automate the process of using architecture-level software performance models for performance analysis. The proposed Descartes Query Language (DQL) is a language to express the demanded performance metrics for prediction as well as the goals and constraints of the specific prediction scenario. It reduces the manual effort and learning curve in working with performance models by a unified interface independent of the employed modeling formalism. We evaluate the applicability and benefits of the proposed approach in the context of several representative case studies.","PeriodicalId":243233,"journal":{"name":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568088.2568100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Over the past few decades, many performance modeling formalisms and prediction techniques for software architectures have been developed in the performance engineering community. However, using a performance model to predict the performance of a software system normally requires extensive experience with the respective modeling formalism and involves a number of complex and time consuming manual steps. In this paper, we propose a generic declarative interface to performance prediction techniques to simplify and automate the process of using architecture-level software performance models for performance analysis. The proposed Descartes Query Language (DQL) is a language to express the demanded performance metrics for prediction as well as the goals and constraints of the specific prediction scenario. It reduces the manual effort and learning curve in working with performance models by a unified interface independent of the employed modeling formalism. We evaluate the applicability and benefits of the proposed approach in the context of several representative case studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
架构级性能模型的性能查询
在过去的几十年里,性能工程社区已经开发了许多用于软件体系结构的性能建模形式化和预测技术。然而,使用性能模型来预测软件系统的性能通常需要对各自的建模形式化有丰富的经验,并且涉及许多复杂且耗时的手动步骤。在本文中,我们提出了性能预测技术的通用声明性接口,以简化和自动化使用架构级软件性能模型进行性能分析的过程。提出的笛卡儿查询语言(DQL)是一种表达预测所需的性能指标以及特定预测场景的目标和约束的语言。它通过一个独立于所使用的建模形式化的统一接口,减少了处理性能模型的手工工作和学习曲线。我们在几个代表性案例研究的背景下评估所提出的方法的适用性和效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The taming of the shrew: increasing performance by automatic parameter tuning for java garbage collectors Uncertainties in the modeling of self-adaptive systems: a taxonomy and an example of availability evaluation Scalable hybrid stream and hadoop network analysis system Efficient optimization of software performance models via parameter-space pruning Real-time multi-cloud management needs application awareness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1