Study of Pattern Storage Technique in Self Organizing Map using Hopfield Energy Function Analysis

S. Gill, Manu Pratap Singh, N. Sharma
{"title":"Study of Pattern Storage Technique in Self Organizing Map using Hopfield Energy Function Analysis","authors":"S. Gill, Manu Pratap Singh, N. Sharma","doi":"10.1109/ADCOM.2006.4289978","DOIUrl":null,"url":null,"abstract":"The Pattern Storage for the Continuum Features of the pattern can be characterized with the Self Organizing Map and Hopfield Energy Function Analysis. The Competitive Learning for the Self Organizing Map determines the Feature Mapping for the patterns with the Continuum Features. The iterations of the competitive learning between the Input Layer, the Feedback Layer reduce the neighboring region in the processing elements of Feedback Layer. On each iteration of this learning, the states of the feedback processing elements changes. The Energy Function corresponding to these states are determined. The change in Energy Function decreases; it shows that the network is approaches towards the Equilibrium State of the Global Stability. The minimum of the Energy States represents the stored pattern. The Network will able to encode the Pattern Information in the terms of Feature Space of the Patterns. Thus the pattern having the same feature will belong to the same Equilibrium State. This mechanism will help to determine the feature mapping for any unknown input pattern as well as any other prototype or noisy input pattern of the already stored pattern.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Pattern Storage for the Continuum Features of the pattern can be characterized with the Self Organizing Map and Hopfield Energy Function Analysis. The Competitive Learning for the Self Organizing Map determines the Feature Mapping for the patterns with the Continuum Features. The iterations of the competitive learning between the Input Layer, the Feedback Layer reduce the neighboring region in the processing elements of Feedback Layer. On each iteration of this learning, the states of the feedback processing elements changes. The Energy Function corresponding to these states are determined. The change in Energy Function decreases; it shows that the network is approaches towards the Equilibrium State of the Global Stability. The minimum of the Energy States represents the stored pattern. The Network will able to encode the Pattern Information in the terms of Feature Space of the Patterns. Thus the pattern having the same feature will belong to the same Equilibrium State. This mechanism will help to determine the feature mapping for any unknown input pattern as well as any other prototype or noisy input pattern of the already stored pattern.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hopfield能量函数分析的自组织映射模式存储技术研究
模式连续特征的模式存储可以用自组织映射和Hopfield能量函数分析来表征。自组织映射的竞争学习决定了具有连续特征的模式的特征映射。输入层和反馈层之间的竞争学习迭代减少了反馈层处理元素中的邻域。在这种学习的每次迭代中,反馈处理元素的状态都会发生变化。确定了与这些状态相对应的能量函数。能量函数的变化减小;结果表明,该网络正趋于全局稳定的平衡状态。能量状态的最小值表示存储模式。网络能够根据模式的特征空间对模式信息进行编码。因此,具有相同特征的图案将属于相同的平衡态。这种机制将有助于确定任何未知输入模式以及任何其他原型或已存储模式的噪声输入模式的特征映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Integrity in the World Wide Web: Use of Nested Hash Function and a Fast Stream Cipher Feature Extraction Learning for Stereovision Based Robot Navigation System Semantics for a Distributed Programming Language Using SACS and Weakest Pre-Conditions On Evaluating Obfuscatory Strength of Alias-based Transforms using Static Analysis A Multi-Algorithmic Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1