Multidimensional multistage k-NN classifiers for handwritten digit recognition

Iratxe Soraluze Arriola, Clemente Rodríguez Lafuente, F. Boto, A. Pérez
{"title":"Multidimensional multistage k-NN classifiers for handwritten digit recognition","authors":"Iratxe Soraluze Arriola, Clemente Rodríguez Lafuente, F. Boto, A. Pérez","doi":"10.1109/IWFHR.2002.1030878","DOIUrl":null,"url":null,"abstract":"This paper analyses the application of multistage classifiers based on the k-NN rule to the automatic classification of handwritten digits. The discriminating capacity of a k-NN classifier increases as the size and dimensionality of the reference pattern set (RPS) increases. This supposes a problem for k-NN classifiers in real applications: the high computational cost required. In order to accelerate the process of calculating the distance to each pattern of the RPS, some authors propose the use of condensing techniques. These methods try to reduce the size of the RPS without losing classification power. Our alternative proposal is based on hierarchical classifiers with rejection techniques and incremental learning that reduce the computational cost of the classifier. We have used 270,000 digits (160,000 digits for training and 110, 000 for the test) of the NIST Special Data Bases 19 and 3 (SD19 and SD3) as experimental data sets. The best non -hierarchical classifier achieves a hit rate of 99.50%. The hierarchical classifier achieves the same hit ratio, but with 24.5 times lower computational cost than best non-hierarchical classifier found in our experimentation and 6 times lower than Hart's Algorithm.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"120 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper analyses the application of multistage classifiers based on the k-NN rule to the automatic classification of handwritten digits. The discriminating capacity of a k-NN classifier increases as the size and dimensionality of the reference pattern set (RPS) increases. This supposes a problem for k-NN classifiers in real applications: the high computational cost required. In order to accelerate the process of calculating the distance to each pattern of the RPS, some authors propose the use of condensing techniques. These methods try to reduce the size of the RPS without losing classification power. Our alternative proposal is based on hierarchical classifiers with rejection techniques and incremental learning that reduce the computational cost of the classifier. We have used 270,000 digits (160,000 digits for training and 110, 000 for the test) of the NIST Special Data Bases 19 and 3 (SD19 and SD3) as experimental data sets. The best non -hierarchical classifier achieves a hit rate of 99.50%. The hierarchical classifier achieves the same hit ratio, but with 24.5 times lower computational cost than best non-hierarchical classifier found in our experimentation and 6 times lower than Hart's Algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手写数字识别的多维多阶段k-NN分类器
本文分析了基于k-NN规则的多阶段分类器在手写体数字自动分类中的应用。k-NN分类器的识别能力随着参考模式集(RPS)的大小和维数的增加而增加。这为k-NN分类器在实际应用中提出了一个问题:所需的高计算成本。为了加速计算到RPS的每个模式的距离的过程,一些作者提出使用压缩技术。这些方法试图在不损失分类能力的情况下减小RPS的大小。我们的替代方案是基于层次分类器的拒绝技术和增量学习,减少分类器的计算成本。我们使用了NIST特殊数据库19和3 (SD19和SD3)的27万位数(16万用于训练,11万用于测试)作为实验数据集。最好的非分层分类器达到99.50%的命中率。层次分类器实现了相同的命中率,但计算成本比我们实验中发现的最佳非层次分类器低24.5倍,比Hart算法低6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1