{"title":"Product prototyping and manufacturing planning with 5-DOF haptic sculpting and dexel volume updating","authors":"Weihang Zhu, Yuan-Shin Lee","doi":"10.1109/HAPTIC.2004.1287183","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical methodology for virtual sculpting of complex surfaces with a developed 5-DOF (degree of freedom) force-torque haptic interface. In the proposed methodology, 5-axis tool motion and analytical tool swept volume are formulated for updating the virtual stock material, which is represented with dexel volume model. Based on the tool motion analysis, a dexel-based collision detection method and a force-torque feedback algorithm are proposed for virtual sculpting. Different from the traditional ways of calculating haptic forces based on depth of penetration or impulses, the proposed method determines the haptic force by finding the material removal rate of dexels. A lab-built 5-DOF haptic interface system is developed for the proposed haptic sculpting system. From the haptic sculpting system, both corresponding tool motion of the creative process and the sculpted model can be output. The tool motion can be recorded and output as NC (numerically-controlled) commands. The output STL model of the haptic sculpting system can be processed for machining planning.","PeriodicalId":384123,"journal":{"name":"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HAPTIC.2004.1287183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents an analytical methodology for virtual sculpting of complex surfaces with a developed 5-DOF (degree of freedom) force-torque haptic interface. In the proposed methodology, 5-axis tool motion and analytical tool swept volume are formulated for updating the virtual stock material, which is represented with dexel volume model. Based on the tool motion analysis, a dexel-based collision detection method and a force-torque feedback algorithm are proposed for virtual sculpting. Different from the traditional ways of calculating haptic forces based on depth of penetration or impulses, the proposed method determines the haptic force by finding the material removal rate of dexels. A lab-built 5-DOF haptic interface system is developed for the proposed haptic sculpting system. From the haptic sculpting system, both corresponding tool motion of the creative process and the sculpted model can be output. The tool motion can be recorded and output as NC (numerically-controlled) commands. The output STL model of the haptic sculpting system can be processed for machining planning.