Near Duplicate Image Pairs Detection Using Double-Channel Convolutional Neural Networks

Yi Zhang, Yanning Zhang, Jinqiu Sun, Haisen Li, Yu Zhu
{"title":"Near Duplicate Image Pairs Detection Using Double-Channel Convolutional Neural Networks","authors":"Yi Zhang, Yanning Zhang, Jinqiu Sun, Haisen Li, Yu Zhu","doi":"10.1109/ICVRV.2017.00052","DOIUrl":null,"url":null,"abstract":"Measuring the image pair similarity is a fundamental task in computer vision. This paper illustrates a neural network model to accomplish the task and decide if the input pair is a near duplicate pair. Authors explore several convolutional neural networks and adopt the double-channel network on this task. The model achieves comparable results on benchmark datasets and well performs on the closely similar images pairs among them. Comparing with the conventional approaches, the network provides a straightforward function to measure the pair-wise similarity and utilizes the strong correlation meanwhile.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring the image pair similarity is a fundamental task in computer vision. This paper illustrates a neural network model to accomplish the task and decide if the input pair is a near duplicate pair. Authors explore several convolutional neural networks and adopt the double-channel network on this task. The model achieves comparable results on benchmark datasets and well performs on the closely similar images pairs among them. Comparing with the conventional approaches, the network provides a straightforward function to measure the pair-wise similarity and utilizes the strong correlation meanwhile.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双通道卷积神经网络的近重复图像对检测
图像对相似度的测量是计算机视觉中的一项基本任务。本文给出了一个神经网络模型来完成这个任务,并判断输入对是否为近重复对。作者探索了几种卷积神经网络,并在此任务中采用了双通道网络。该模型在基准数据集上取得了可比性的结果,并且在它们之间非常相似的图像对上表现良好。与传统方法相比,该网络提供了一个直观的函数来度量成对相似度,同时利用了强相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1