An efficient clustering method for k-anonymization

Jun-Lin Lin, Meng-Cheng Wei
{"title":"An efficient clustering method for k-anonymization","authors":"Jun-Lin Lin, Meng-Cheng Wei","doi":"10.1145/1379287.1379297","DOIUrl":null,"url":null,"abstract":"The <i>k</i>-anonymity model is a privacy-preserving approach that has been extensively studied for the past few years. To minimize the information loss due to anonymization, it is crucial to group similar data together and then anonymize each group individually. This work proposes a clustering-based <i>k</i>-anonymization method that runs in <i>O</i>(<i>n<sup>2</sup>/k</i>) time. We experimentally compare our method with another clustering-based <i>k</i>-anonymization method recently proposed by Byun <i>et al</i>. Even though their method has a time complexity of O(<i>n</i><sup><i>2</i></sup>), the experiments show that our method outperforms their method with respect to information loss and resilience to outliers.","PeriodicalId":245552,"journal":{"name":"International Conference on Pattern Analysis and Intelligent Systems","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Analysis and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1379287.1379297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

The k-anonymity model is a privacy-preserving approach that has been extensively studied for the past few years. To minimize the information loss due to anonymization, it is crucial to group similar data together and then anonymize each group individually. This work proposes a clustering-based k-anonymization method that runs in O(n2/k) time. We experimentally compare our method with another clustering-based k-anonymization method recently proposed by Byun et al. Even though their method has a time complexity of O(n2), the experiments show that our method outperforms their method with respect to information loss and resilience to outliers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效的k-匿名聚类方法
k-匿名模型是一种隐私保护方法,在过去的几年里得到了广泛的研究。为了最大限度地减少匿名化造成的信息损失,将相似的数据分组在一起,然后对每组数据分别进行匿名化是至关重要的。这项工作提出了一种基于聚类的k-匿名化方法,运行时间为O(n2/k)。我们通过实验将我们的方法与Byun等人最近提出的另一种基于聚类的k-匿名化方法进行了比较。尽管他们的方法具有O(n2)的时间复杂度,但实验表明,我们的方法在信息丢失和对异常值的弹性方面优于他们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy issues with sharing reputation across virtual communities PCTA: privacy-constrained clustering-based transaction data anonymization Rational enforcement of digital oblivion Improving security by using a database management system for integrated statistical data analysis A probabilistic look ahead of anonymization: keynote talk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1