D. A. Valkaniotis, J. Sirigos, N. Fakotakis, G. Kokkinakis
{"title":"Text-independent off-line writer recognition using neural networks","authors":"D. A. Valkaniotis, J. Sirigos, N. Fakotakis, G. Kokkinakis","doi":"10.5281/ZENODO.36306","DOIUrl":null,"url":null,"abstract":"In this paper we present a text-independent offline writer recognition system based on multilayer perceptrons (MLPs). The system can be used for both identification and verification purposes. It was tested on a population of 20 writers with non-correlated training and test specimens. The mean error for identification was 3.5% while error rates as low as 0.5% were achieved on specimens with more than 25 characters. For verification the mean error was 1.2% (2.22% false rejection, 0.18% false acceptance) considering a minimum of 15 characters per test specimen. These error rates are comparable to those achieved by classical methods while the response of the system is substantially faster.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we present a text-independent offline writer recognition system based on multilayer perceptrons (MLPs). The system can be used for both identification and verification purposes. It was tested on a population of 20 writers with non-correlated training and test specimens. The mean error for identification was 3.5% while error rates as low as 0.5% were achieved on specimens with more than 25 characters. For verification the mean error was 1.2% (2.22% false rejection, 0.18% false acceptance) considering a minimum of 15 characters per test specimen. These error rates are comparable to those achieved by classical methods while the response of the system is substantially faster.