Finite-time synchronization of delayed chaotic neural networks based on event-triggered intermittent control

Zeyu Ruan, Junhao Hu, Jun Mei
{"title":"Finite-time synchronization of delayed chaotic neural networks based on event-triggered intermittent control","authors":"Zeyu Ruan, Junhao Hu, Jun Mei","doi":"10.1109/ICCSS53909.2021.9722021","DOIUrl":null,"url":null,"abstract":"This paper investigates the finite-time synchronization (FETS) issue for a class of chaotic neural networks with time delays via event-triggered intermittent control. The event-triggered intermittent controller, in which intermittent instants are not predesigned, is explored to achieve FETS for delayed chaotic neural networks (DCNNs). By utilizing finite-time theory and constructing Lyapunov functional, several sufficient conditions for FETS are obtained under the designed control scheme. Meanwhile, the Zeno behavior is excluded. Our results about FETS criterion are new and valid, and enrich some of the existing results. In the end, numerical simulation verifies the effectiveness of the theoretical analysis.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9722021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the finite-time synchronization (FETS) issue for a class of chaotic neural networks with time delays via event-triggered intermittent control. The event-triggered intermittent controller, in which intermittent instants are not predesigned, is explored to achieve FETS for delayed chaotic neural networks (DCNNs). By utilizing finite-time theory and constructing Lyapunov functional, several sufficient conditions for FETS are obtained under the designed control scheme. Meanwhile, the Zeno behavior is excluded. Our results about FETS criterion are new and valid, and enrich some of the existing results. In the end, numerical simulation verifies the effectiveness of the theoretical analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于事件触发间歇控制的延迟混沌神经网络有限时间同步
研究了一类具有时滞的混沌神经网络的事件触发间歇控制的有限时间同步问题。研究了不预先设计间歇时刻的事件触发间歇控制器,以实现延迟混沌神经网络(DCNNs)的场效应效应效应。利用有限时间理论和构造Lyapunov泛函,得到了在所设计的控制方案下fet的几个充分条件。同时,芝诺行为被排除在外。本文关于场效应效应判据的研究结果新颖有效,丰富了已有的一些研究成果。最后通过数值仿真验证了理论分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1