{"title":"Preliminary Environment Mapping for Redirected Walking","authors":"Christian Hirt, Markus Zank, A. Kunz","doi":"10.1109/VR.2018.8446262","DOIUrl":null,"url":null,"abstract":"Redirected walking applications allow a user to explore large virtual environments in a smaller physical space by employing so-called redirection techniques. To further improve the immersion of a virtual experience, path planner algorithms were developed which choose redirection techniques based on the current position and orientation of the user. In order to ensure a reliable performance, planning algorithms depend on accurate position tracking using an external tracking system. However, the disadvantage of such a tracking method is the time-consuming preparation of the physical environment which renders the system immobile. A possible solution to eliminate this dependency is to replace the external tracking system with a state-of-the-art inside-out tracker based on the concept of Simultaneous Localization and Mapping (SLAM). In this paper, we present an approach in which we attach a commercially available SLAM device to a head-mounted display to track the head motion of a user. From sensor recordings of the device, we construct a map of the surrounding environment for future processing in an existing path planner for redirected walking.","PeriodicalId":355048,"journal":{"name":"2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2018.8446262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Redirected walking applications allow a user to explore large virtual environments in a smaller physical space by employing so-called redirection techniques. To further improve the immersion of a virtual experience, path planner algorithms were developed which choose redirection techniques based on the current position and orientation of the user. In order to ensure a reliable performance, planning algorithms depend on accurate position tracking using an external tracking system. However, the disadvantage of such a tracking method is the time-consuming preparation of the physical environment which renders the system immobile. A possible solution to eliminate this dependency is to replace the external tracking system with a state-of-the-art inside-out tracker based on the concept of Simultaneous Localization and Mapping (SLAM). In this paper, we present an approach in which we attach a commercially available SLAM device to a head-mounted display to track the head motion of a user. From sensor recordings of the device, we construct a map of the surrounding environment for future processing in an existing path planner for redirected walking.