Diarization in Maximally Ecological Recordings: Data from Tsimane Children

Julien Karadayi, Camila Scaff, Alejandrina Cristia
{"title":"Diarization in Maximally Ecological Recordings: Data from Tsimane Children","authors":"Julien Karadayi, Camila Scaff, Alejandrina Cristia","doi":"10.21437/SLTU.2018-7","DOIUrl":null,"url":null,"abstract":"Daylong recordings may be the most naturalistic and least invasive way to collect speech data, sampling all potential language use contexts, with a device that is unobtrusive enough to have little effect on people’s behaviors. As a result, this technology is relevant for studying diverse languages, including understudied languages in remote settings – provided we can apply effective unsupervised analyses procedures. In this paper, we analyze in detail results from applying an open source package (DiViMe) and a proprietary alternative (LENA ), onto clips periodically sampled from daylong recorders worn by Tsimane children of the Bolivian Amazon (age range: 6-68 months; recording time/child range: 4-22h). Detailed analyses showed the open source package fared no worse than the proprietary alternative. However, performance was overall rather dismal. We suggest promising directions for improvements based on analyses of variation in performance within our corpus.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Daylong recordings may be the most naturalistic and least invasive way to collect speech data, sampling all potential language use contexts, with a device that is unobtrusive enough to have little effect on people’s behaviors. As a result, this technology is relevant for studying diverse languages, including understudied languages in remote settings – provided we can apply effective unsupervised analyses procedures. In this paper, we analyze in detail results from applying an open source package (DiViMe) and a proprietary alternative (LENA ), onto clips periodically sampled from daylong recorders worn by Tsimane children of the Bolivian Amazon (age range: 6-68 months; recording time/child range: 4-22h). Detailed analyses showed the open source package fared no worse than the proprietary alternative. However, performance was overall rather dismal. We suggest promising directions for improvements based on analyses of variation in performance within our corpus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大限度的生态记录:来自提斯曼儿童的数据
全天录音可能是收集语音数据的最自然、最不具侵入性的方式,它可以对所有潜在的语言使用环境进行采样,而且这种设备不太显眼,对人们的行为几乎没有影响。因此,这项技术适用于学习各种语言,包括在远程环境中学习不足的语言——前提是我们可以应用有效的无监督分析程序。在本文中,我们详细分析了将开源包(DiViMe)和专有替代方案(LENA)应用于玻利维亚亚马逊地区Tsimane儿童(年龄范围:6-68个月;记录时间/孩子范围:4-22h)。详细的分析表明,开放源码包的表现并不比专有的替代品差。然而,整体表现相当糟糕。基于对语料库中性能变化的分析,我们提出了有希望的改进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Corpus of the Sorani Kurdish Folkloric Lyrics A Sentiment Analysis Dataset for Code-Mixed Malayalam-English Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala and Sundanese Text-to-Speech Systems Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1