Towards a Protein-Protein Interactions Framework using Graph Analytics on Apache Spark

Hina Umbrin, M. Aamir, Javed Ferzund, H. Tahir, R. Latif
{"title":"Towards a Protein-Protein Interactions Framework using Graph Analytics on Apache Spark","authors":"Hina Umbrin, M. Aamir, Javed Ferzund, H. Tahir, R. Latif","doi":"10.1109/iCoMET57998.2023.10099075","DOIUrl":null,"url":null,"abstract":"The field of data science has facilitated the extraction of information from organized and unstructured data. It utilizes several approaches, algorithms, and processes to evaluate complex data effectively. Protein-Protein Interactions (PPIs) are crucial for a variety of chemical processes. This initiative will build predictive models that give a more efficient and straightforward way for PPI prediction to enhance the PPI prediction for high throughput. This work uses the PageRank algorithm for PPI systems' organic properties. PageRank is a method for ranking that can rate the interaction in MIPS datasets. It assigns a value to each interaction and determines the protein IDs with the most significant number of interactions. We have used the Perl programming language, Mlib, and GraphX libraries for PPI predictions. The data suggest that this method yields quicker execution times and good outcomes.","PeriodicalId":369792,"journal":{"name":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET57998.2023.10099075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The field of data science has facilitated the extraction of information from organized and unstructured data. It utilizes several approaches, algorithms, and processes to evaluate complex data effectively. Protein-Protein Interactions (PPIs) are crucial for a variety of chemical processes. This initiative will build predictive models that give a more efficient and straightforward way for PPI prediction to enhance the PPI prediction for high throughput. This work uses the PageRank algorithm for PPI systems' organic properties. PageRank is a method for ranking that can rate the interaction in MIPS datasets. It assigns a value to each interaction and determines the protein IDs with the most significant number of interactions. We have used the Perl programming language, Mlib, and GraphX libraries for PPI predictions. The data suggest that this method yields quicker execution times and good outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在Apache Spark上使用图形分析实现蛋白质-蛋白质相互作用框架
数据科学领域促进了从有组织和非结构化数据中提取信息。它利用几种方法、算法和过程来有效地评估复杂的数据。蛋白质-蛋白质相互作用(PPIs)对多种化学过程至关重要。该计划将建立预测模型,为PPI预测提供更有效和直接的方法,以提高高产量的PPI预测。这项工作使用PageRank算法对PPI系统的有机性质。PageRank是一种排名方法,可以对MIPS数据集中的交互进行评级。它为每个相互作用分配一个值,并确定具有最显著相互作用数量的蛋白质id。我们已经使用Perl编程语言、Mlib和GraphX库进行PPI预测。数据表明,这种方法可以产生更快的执行时间和良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the Effectiveness of Flat Plate Solar Collector for Water Heating in Pakistan Deep learning-based video anonymization for security and privacy Sustainable Performance of Energy sector Organizations through Green Supply Chain Management The Influential factors for Pollution Emissions in manufacturing business Polyimide Substrate based Compact Antenna for Terahertz Wireless Communication Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1