Universal encoding of multispectral images

D. Valsesia, P. Boufounos
{"title":"Universal encoding of multispectral images","authors":"D. Valsesia, P. Boufounos","doi":"10.1109/ICASSP.2016.7472519","DOIUrl":null,"url":null,"abstract":"We propose a new method for low-complexity compression of multispectral images. We develop on a novel approach to coding signals with side information based on recent advances in compressed sensing and universal scalar quantization. Our approach can be interpreted as a variation of quantized compressed sensing, where the most significant bits are discarded at the encoder and recovered at the decoder from the side information. The image is reconstructed using weighted total variation minimization, incorporating side information in the weights while enforcing consistency with the recovered quantized coefficient values. Our experiments validate our approach and confirm the improvements in rate-distortion performance.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We propose a new method for low-complexity compression of multispectral images. We develop on a novel approach to coding signals with side information based on recent advances in compressed sensing and universal scalar quantization. Our approach can be interpreted as a variation of quantized compressed sensing, where the most significant bits are discarded at the encoder and recovered at the decoder from the side information. The image is reconstructed using weighted total variation minimization, incorporating side information in the weights while enforcing consistency with the recovered quantized coefficient values. Our experiments validate our approach and confirm the improvements in rate-distortion performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多光谱图像的通用编码
提出了一种新的多光谱图像低复杂度压缩方法。基于压缩感知和通用标量量化的最新进展,我们开发了一种具有侧信息的编码信号的新方法。我们的方法可以被解释为量化压缩感知的一种变化,其中最重要的比特在编码器处被丢弃,并在解码器处从侧信息中恢复。利用加权总变差最小化方法重建图像,在权重中加入侧信息,同时加强与恢复的量化系数值的一致性。我们的实验验证了我们的方法,并证实了速率失真性能的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1