An overview of kernel based nonnegative matrix factorization

Viet-Hang Duong, Wen-Chi Hsieh, P. Bao, Jia-Ching Wang
{"title":"An overview of kernel based nonnegative matrix factorization","authors":"Viet-Hang Duong, Wen-Chi Hsieh, P. Bao, Jia-Ching Wang","doi":"10.1109/ICOT.2014.6956641","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization (NMF) is a recent method used to decompose a given data matrix into two nonnegative sparse factors. There are many techniques applied to enhance abilities of NMF, particularly kernel technique which discovering higher-order correlation between data points and obtaining more powerful latent features. This paper presents an overview of kernel methods on NMF along with its representation and recent variants. The development as well as algorithms for kernel based NMF are discussed and presented systematically.","PeriodicalId":343641,"journal":{"name":"2014 International Conference on Orange Technologies","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Orange Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2014.6956641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nonnegative matrix factorization (NMF) is a recent method used to decompose a given data matrix into two nonnegative sparse factors. There are many techniques applied to enhance abilities of NMF, particularly kernel technique which discovering higher-order correlation between data points and obtaining more powerful latent features. This paper presents an overview of kernel methods on NMF along with its representation and recent variants. The development as well as algorithms for kernel based NMF are discussed and presented systematically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核的非负矩阵分解综述
非负矩阵分解(NMF)是一种将给定数据矩阵分解为两个非负稀疏因子的新方法。有许多技术被用于提高NMF的能力,特别是核技术,它发现数据点之间的高阶相关性,并获得更强大的潜在特征。本文概述了NMF的核方法及其表示和最新的变体。系统地讨论了基于核的NMF的发展及其算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An automatic speaker-speech recognition system for friendly HMI based on binary halved clustering A fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation A novel saliency detection framework for infrared thermal images A multistep liver segmentation strategy by combining level set based method with texture analysis for CT images An emotional feedback system based on a regulation process model for happiness improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1