Case study of aeroengine parameter prediction based on MIV and ELM

Yingshun Li, Fuyang Wang, Ximing Sun, X. Yi
{"title":"Case study of aeroengine parameter prediction based on MIV and ELM","authors":"Yingshun Li, Fuyang Wang, Ximing Sun, X. Yi","doi":"10.1109/SDPC.2019.00019","DOIUrl":null,"url":null,"abstract":"Aiming at the problems existing in the current prediction methods of aeroengine parameters, such as the difficulty in parameter selection, the slow training speed and the tendency to fall into local optimal solution of traditional BP neural network algorithm, this paper proposes the prediction method of aeroengine performance parameters based on mean influence value (MIV) algorithm and extreme learning machine (ELM). Firstly, we preprocess the sample data. Secondly, screening out the main parameters that affect the predicted parameters by MIV algorithm, attribute reduction is realized, the result of attribute reduction is taken as the input to train an ELM. Finally, using the test samples to do the test. The testing results show that the algorithm is faster and more accurate in parameter prediction.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problems existing in the current prediction methods of aeroengine parameters, such as the difficulty in parameter selection, the slow training speed and the tendency to fall into local optimal solution of traditional BP neural network algorithm, this paper proposes the prediction method of aeroengine performance parameters based on mean influence value (MIV) algorithm and extreme learning machine (ELM). Firstly, we preprocess the sample data. Secondly, screening out the main parameters that affect the predicted parameters by MIV algorithm, attribute reduction is realized, the result of attribute reduction is taken as the input to train an ELM. Finally, using the test samples to do the test. The testing results show that the algorithm is faster and more accurate in parameter prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MIV和ELM的航空发动机参数预测实例研究
针对目前航空发动机参数预测方法中存在的传统BP神经网络算法参数选择困难、训练速度慢、容易陷入局部最优解等问题,提出了基于平均影响值(MIV)算法和极限学习机(ELM)的航空发动机性能参数预测方法。首先,对样本数据进行预处理。其次,利用MIV算法筛选出影响预测参数的主要参数,实现属性约简,将属性约简结果作为训练ELM的输入;最后,使用测试样本进行测试。测试结果表明,该算法在参数预测方面速度更快,精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Reliability Optimization Allocation Method of Control Rod Drive Mechanism Based on GO Method Lubrication Oil Degradation Trajectory Prognosis with ARIMA and Bayesian Models Algorithm for Measuring Attitude Angle of Intelligent Ammunition with Magnetometer/GNSS Estimation of Spectrum Envelope for Gear Motor Monitoring Using A Laser Doppler Velocimeter Reliability Optimization Allocation Method Based on Improved Dynamic Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1