Quantum Angle Generator for Image Generation

Rehm Florian, Vallecorsa Sofia, Grossi Michele, Borras Kerstin, Krücker Dirk, Schnake Simon, Verney-Provatas Alexis-Harilaos
{"title":"Quantum Angle Generator for Image Generation","authors":"Rehm Florian, Vallecorsa Sofia, Grossi Michele, Borras Kerstin, Krücker Dirk, Schnake Simon, Verney-Provatas Alexis-Harilaos","doi":"10.1109/SEC54971.2022.00064","DOIUrl":null,"url":null,"abstract":"The Quantum Angle Generator (QAG) is a new generative model for quantum computers. It consists of a parameterized quantum circuit trained with an objective function. The QAG model utilizes angle encoding for the conversion between the generated quantum data and classical data. Therefore, it requires one qubit per feature or pixel, while the output resolution is adjusted by the number of shots performing the image generation. This approach allows the generation of highly precise images on recent quantum computers. In this paper, the model is optimised for a High Energy Physics (HEP) use case generating simplified one-dimensional images measured by a specific particle detector, a calorimeter. With a reasonable number of shots, the QAG model achieves an elevated level of accuracy. The advantages of the QAG model are lined out - such as simple and stable training, a reasonable amount of qubits, circuit calls, circuit size and computation time compared to other quantum generative models, e.g. quantum GANs (qGANs) and Quantum Circuit Born Machines.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Quantum Angle Generator (QAG) is a new generative model for quantum computers. It consists of a parameterized quantum circuit trained with an objective function. The QAG model utilizes angle encoding for the conversion between the generated quantum data and classical data. Therefore, it requires one qubit per feature or pixel, while the output resolution is adjusted by the number of shots performing the image generation. This approach allows the generation of highly precise images on recent quantum computers. In this paper, the model is optimised for a High Energy Physics (HEP) use case generating simplified one-dimensional images measured by a specific particle detector, a calorimeter. With a reasonable number of shots, the QAG model achieves an elevated level of accuracy. The advantages of the QAG model are lined out - such as simple and stable training, a reasonable amount of qubits, circuit calls, circuit size and computation time compared to other quantum generative models, e.g. quantum GANs (qGANs) and Quantum Circuit Born Machines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像生成的量子角发生器
量子角发生器(QAG)是一种新的量子计算机生成模型。它由经过目标函数训练的参数化量子电路组成。QAG模型利用角度编码实现生成的量子数据与经典数据之间的转换。因此,每个特征或像素需要一个量子比特,而输出分辨率是根据执行图像生成的拍摄次数来调整的。这种方法可以在最近的量子计算机上生成高精度的图像。在本文中,该模型针对高能物理(HEP)用例进行了优化,生成了由特定粒子探测器(量热计)测量的简化一维图像。通过合理的射击次数,QAG模型达到了较高的精度水平。与其他量子生成模型(如量子gan (qgan)和量子电路生成机器)相比,QAG模型的优点是简单而稳定的训练,合理的量子位,电路调用,电路大小和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities for Optimizing the Container Runtime Poster: EdgeShell - A language for composing edge applications Quantum Text Encoding for Classification Tasks Scaling Vehicle Routing Problem Solvers with QUBO-based Specialized Hardware FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1