Multiobjective Imperialist Competitive Algorithm for Solving Nonlinear Constrained Optimization Problems

Chun-an Liu, H. Jia
{"title":"Multiobjective Imperialist Competitive Algorithm for Solving Nonlinear Constrained Optimization Problems","authors":"Chun-an Liu, H. Jia","doi":"10.21078/JSSI-2019-532-18","DOIUrl":null,"url":null,"abstract":"Abstract Nonlinear constrained optimization problem (NCOP) has been arisen in a diverse range of sciences such as portfolio, economic management, airspace engineering and intelligence system etc. In this paper, a new multiobjective imperialist competitive algorithm for solving NCOP is proposed. First, we review some existing excellent algorithms for solving NOCP; then, the nonlinear constrained optimization problem is transformed into a biobjective optimization problem. Second, in order to improve the diversity of evolution country swarm, and help the evolution country swarm to approach or land into the feasible region of the search space, three kinds of different methods of colony moving toward their relevant imperialist are given. Thirdly, the new operator for exchanging position of the imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich the exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method is also presented in order to accelerate the convergence speed. At last, the new approach is tested on thirteen well-known NP-hard nonlinear constrained optimization functions, and the experiment evidences suggest that the proposed method is robust, efficient, and generic when solving nonlinear constrained optimization problem. Compared with some other state-of-the-art algorithms, the proposed algorithm has remarkable advantages in terms of the best, mean, and worst objective function value and the standard deviations.","PeriodicalId":258223,"journal":{"name":"Journal of Systems Science and Information","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21078/JSSI-2019-532-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Nonlinear constrained optimization problem (NCOP) has been arisen in a diverse range of sciences such as portfolio, economic management, airspace engineering and intelligence system etc. In this paper, a new multiobjective imperialist competitive algorithm for solving NCOP is proposed. First, we review some existing excellent algorithms for solving NOCP; then, the nonlinear constrained optimization problem is transformed into a biobjective optimization problem. Second, in order to improve the diversity of evolution country swarm, and help the evolution country swarm to approach or land into the feasible region of the search space, three kinds of different methods of colony moving toward their relevant imperialist are given. Thirdly, the new operator for exchanging position of the imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich the exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method is also presented in order to accelerate the convergence speed. At last, the new approach is tested on thirteen well-known NP-hard nonlinear constrained optimization functions, and the experiment evidences suggest that the proposed method is robust, efficient, and generic when solving nonlinear constrained optimization problem. Compared with some other state-of-the-art algorithms, the proposed algorithm has remarkable advantages in terms of the best, mean, and worst objective function value and the standard deviations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解非线性约束优化问题的多目标帝国主义竞争算法
非线性约束优化问题(NCOP)已广泛应用于投资组合、经济管理、航空航天工程和智能系统等科学领域。本文提出了求解NCOP问题的一种新的多目标帝国主义竞争算法。首先,我们回顾了一些现有的求解NOCP的优秀算法;然后,将非线性约束优化问题转化为双目标优化问题。其次,为了提高进化国家群体的多样性,帮助进化国家群体接近或降落到搜索空间的可行区域,给出了三种不同的群体向其相关帝国主义移动的方法。第三,在遗传算法中引入类似于重组算子的帝国与殖民地位置交换算子,丰富了算法的探索和开发能力。第四,为了加快收敛速度,提出了一种局部搜索方法。最后,对13个著名的NP-hard非线性约束优化函数进行了测试,实验结果表明,该方法在求解非线性约束优化问题时具有鲁棒性、高效性和通用性。与现有算法相比,该算法在最佳、平均、最差目标函数值和标准差方面具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Annotation and Joint Extraction of Scientific Entities and Relationships in NSFC Project Texts Design and Selection of Pharmaceutical Innovation Incentive Policies: Subsidy or Inclusion in Health Insurance Plan Pricing Decision of E-Commerce Supply Chains with Return and Online Review of Product Quality Does Gender Affect Travelers' Intention to Use New Energy Autonomous Vehicles? Evidence from Beijing City, China Analysis of the Pull Effect of Local Government Special-Purpose Bond Investment on Economic Growth Under the Input-Output Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1