Load Forecasting in Distribution Grids with High Renewable Energy Penetration for Predictive Energy Management Systems

Patrick S. Sauter, Philipp Karg, Mathias Kluwe, S. Hohmann
{"title":"Load Forecasting in Distribution Grids with High Renewable Energy Penetration for Predictive Energy Management Systems","authors":"Patrick S. Sauter, Philipp Karg, Mathias Kluwe, S. Hohmann","doi":"10.1109/ISGTEurope.2018.8571524","DOIUrl":null,"url":null,"abstract":"In this paper we present a new approach for load forecasting in distribution grids with high renewable energy penetration. The method is based on multiple neural networks and the application focuses on predictive energy management systems which use a model predictive control (MPC) approach. These control algorithms need predictions of demand profiles from 15 minutes up to several days. The short-term forecast values are more important than the long-term prediction values beyond six or 24 hours. Thus, the new method takes instantaneous measurements into account in order to provide a high accuracy for the first prediction values. In addition, weather forecast data is included as input variables of the neural networks for the purpose of mapping the influence of renewable energy generation on the load profiles. With this approach, the method improves the Root-Mean-Squared Error up to 80 % compared to a reference model based on a weekly persistence.","PeriodicalId":302863,"journal":{"name":"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2018.8571524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a new approach for load forecasting in distribution grids with high renewable energy penetration. The method is based on multiple neural networks and the application focuses on predictive energy management systems which use a model predictive control (MPC) approach. These control algorithms need predictions of demand profiles from 15 minutes up to several days. The short-term forecast values are more important than the long-term prediction values beyond six or 24 hours. Thus, the new method takes instantaneous measurements into account in order to provide a high accuracy for the first prediction values. In addition, weather forecast data is included as input variables of the neural networks for the purpose of mapping the influence of renewable energy generation on the load profiles. With this approach, the method improves the Root-Mean-Squared Error up to 80 % compared to a reference model based on a weekly persistence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预测能源管理系统的可再生能源高渗透配电网负荷预测
本文提出了一种高可再生能源配电网负荷预测的新方法。该方法基于多个神经网络,应用于使用模型预测控制(MPC)方法的预测能源管理系统。这些控制算法需要从15分钟到几天的需求预测。超过6小时或24小时的短期预测值比长期预测值更重要。因此,新方法考虑了瞬时测量,以便为第一次预测值提供较高的精度。此外,为了映射可再生能源发电对负荷分布的影响,将天气预报数据作为神经网络的输入变量。通过这种方法,与基于每周持久性的参考模型相比,该方法将根均方误差提高了80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Identification of HVAC Systems for Office Buildings Considering Real Environment Provision of Frequency-Containment-Reserve by Electric Vehicles: Impact of Technical Requirements Preference Analyses of Residential Appliances in Demand Response: A Novel Perspective Based on Behavioral Economics Research of TRBVT Regulation Characteristics Day-Ahead Optimal Reserve Capacity Planning Based on Stochastic RE and DR Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1