{"title":"Open-Set Bottle Classifying using a Convolution Neural Network","authors":"Supanat Jintawatsakoon, Werayuth Charoenruengkit","doi":"10.1109/ICTKE47035.2019.8966900","DOIUrl":null,"url":null,"abstract":"A multi-class image classification application plays a vital role in our lives. Traditional approaches focus on a close-set classification problem. However, an open-set classification problem often occur in the real-world applications. This paper focuses on the convolution neural network based image classification for beverage bottle image classification under the open-set environment, in which the input image may not appear in any known classes during training time. The proposed models explore the approaches based on the N-Binary, N+unknown, and N+combination models. The results show that N+unknown approach perform better than that of the N+combination and N-Binary approach in terms of accuracy and time.","PeriodicalId":442255,"journal":{"name":"2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE)","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTKE47035.2019.8966900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A multi-class image classification application plays a vital role in our lives. Traditional approaches focus on a close-set classification problem. However, an open-set classification problem often occur in the real-world applications. This paper focuses on the convolution neural network based image classification for beverage bottle image classification under the open-set environment, in which the input image may not appear in any known classes during training time. The proposed models explore the approaches based on the N-Binary, N+unknown, and N+combination models. The results show that N+unknown approach perform better than that of the N+combination and N-Binary approach in terms of accuracy and time.