Identification of single-DOF motion control systems via filtered linear regression

Seung-Jean Kim, Sung-Yeol Kim, I. Ha, H. Yoo, Dong-Il Kim
{"title":"Identification of single-DOF motion control systems via filtered linear regression","authors":"Seung-Jean Kim, Sung-Yeol Kim, I. Ha, H. Yoo, Dong-Il Kim","doi":"10.1109/ISIE.2003.1267315","DOIUrl":null,"url":null,"abstract":"This paper proposes a new on-line identification method for single-degree-of-freedom (DOF) motion control systems. The proposed method is based on the application of the well-known least mean squares (LMS) methods to their filtered linear regression models. As a result, its implementation requires neither the information of acceleration nor high-pass filtering of velocity, in contrast with the direct application of the LMS methods to on-line identification of single-DOF motion control systems. Most importantly, we show that the existence of steady-state oscillation can assure the persistent excitation (PE) property for parameter convergence. As a matter of fact, in practical applications, the existence of steady-state oscillation can be easily guaranteed by periodic excitation. The generality and practical use of the proposed method are demonstrated through some simulation results.","PeriodicalId":166431,"journal":{"name":"2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2003.1267315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new on-line identification method for single-degree-of-freedom (DOF) motion control systems. The proposed method is based on the application of the well-known least mean squares (LMS) methods to their filtered linear regression models. As a result, its implementation requires neither the information of acceleration nor high-pass filtering of velocity, in contrast with the direct application of the LMS methods to on-line identification of single-DOF motion control systems. Most importantly, we show that the existence of steady-state oscillation can assure the persistent excitation (PE) property for parameter convergence. As a matter of fact, in practical applications, the existence of steady-state oscillation can be easily guaranteed by periodic excitation. The generality and practical use of the proposed method are demonstrated through some simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单自由度运动控制系统的滤波线性回归辨识
提出了一种新的单自由度运动控制系统在线辨识方法。提出的方法是基于将众所周知的最小均方差(LMS)方法应用于其过滤的线性回归模型。因此,与直接将LMS方法应用于单自由度运动控制系统的在线识别相比,该方法的实现既不需要加速度信息,也不需要速度的高通滤波。最重要的是,我们证明了稳态振荡的存在可以保证参数收敛的持续激励(PE)性质。事实上,在实际应用中,通过周期激励可以很容易地保证稳态振荡的存在。仿真结果表明了该方法的通用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematization of the project of the production system control Random weights search in compressed neural networks using overdetermined pseudoinverse Embedded system to recognize the heat power of a fuel gas and to classificate the quality of alcohol fuel Automatic P/PI speed control for industry servo drives using on-line spectrum analysis of torque command Boost half-bridge ballast with high power factor and auxiliary resonant branch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1