KSwSVR: A New Load Forecasting Method for Efficient Resources Provisioning in Cloud

Rongdong Hu, Jingfei Jiang, Guangming Liu, Lixin Wang
{"title":"KSwSVR: A New Load Forecasting Method for Efficient Resources Provisioning in Cloud","authors":"Rongdong Hu, Jingfei Jiang, Guangming Liu, Lixin Wang","doi":"10.1109/SCC.2013.67","DOIUrl":null,"url":null,"abstract":"Cloud provider should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to the actual resources demand of applications. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multi-types of resources were used to verify its prediction accuracy, stability and adaptability, comparing with AR, BPNN and standard SVR. CPU allocation experiment indicated that KSwSVR can effectively reduce resources consumption while meeting Service Level Agreements requirement.","PeriodicalId":370898,"journal":{"name":"2013 IEEE International Conference on Services Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Services Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2013.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Cloud provider should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to the actual resources demand of applications. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multi-types of resources were used to verify its prediction accuracy, stability and adaptability, comparing with AR, BPNN and standard SVR. CPU allocation experiment indicated that KSwSVR can effectively reduce resources consumption while meeting Service Level Agreements requirement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KSwSVR:一种新的云资源高效分配负荷预测方法
云提供商应该在保证服务质量的同时最大限度地利用资源。一种最佳策略是根据应用程序的实际资源需求,以细粒度模式及时分配资源。该策略的必要前提是提前获取未来负荷信息。针对云计算环境的复杂性和动态性特点,提出了一种基于统计学习理论的多步超前负荷预测方法KSwSVR。它结合了改进的支持向量回归算法和卡尔曼平滑。通过与AR、BPNN和标准SVR的比较,验证了该方法的预测精度、稳定性和适应性。CPU分配实验表明,KSwSVR在满足服务水平协议要求的同时,有效降低了资源消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT Mashup as a Service: Cloud-Based Mashup Service for the Internet of Things Cloud Service Negotiation: A Research Roadmap Formal Modeling of Elastic Service-Based Business Processes Security-Aware Resource Allocation in Clouds Integrated Syntax and Semantic Validation for Services Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1