{"title":"On threshold circuits for parity","authors":"R. Paturi, M. Saks","doi":"10.1109/FSCS.1990.89559","DOIUrl":null,"url":null,"abstract":"Motivated by, the problem of understanding the limitations of neural networks for representing Boolean functions, the authors consider size-depth tradeoffs for threshold circuits that compute the parity function. They give an almost optimal lower bound on the number of edges of any depth-2 threshold circuit that computes the parity function with polynomially bounded weights. The main technique used in the proof, which is based on the theory of rational approximation, appears to be a potentially useful technique for the analysis of such networks. It is conjectured that there are no linear size, bounded-depth threshold circuits for computing parity.<<ETX>>","PeriodicalId":271949,"journal":{"name":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSCS.1990.89559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
Motivated by, the problem of understanding the limitations of neural networks for representing Boolean functions, the authors consider size-depth tradeoffs for threshold circuits that compute the parity function. They give an almost optimal lower bound on the number of edges of any depth-2 threshold circuit that computes the parity function with polynomially bounded weights. The main technique used in the proof, which is based on the theory of rational approximation, appears to be a potentially useful technique for the analysis of such networks. It is conjectured that there are no linear size, bounded-depth threshold circuits for computing parity.<>