EmoBGM: Estimating sound's emotion for creating slideshows with suitable BGM

Cedric Konan, H. Suwa, Yutaka Arakawa, K. Yasumoto
{"title":"EmoBGM: Estimating sound's emotion for creating slideshows with suitable BGM","authors":"Cedric Konan, H. Suwa, Yutaka Arakawa, K. Yasumoto","doi":"10.1109/PERCOMW.2017.7917587","DOIUrl":null,"url":null,"abstract":"This paper presents a study about estimating the emotions conveyed in clips of background music (BGM) to be used in an automatic slideshow creation system. The system we aimed to develop, automatically tags each given pieces of background music with the main emotion it conveys, in order to recommend the most suitable music clip to the slideshow creators, based on the main emotions of embedded photos. As a first step of our research, we developed a machine learning model to estimate the emotions conveyed in a music clip and achieved 88% classification accuracy with cross-validation technique. The second part of our work involved developing a web application using Microsoft Emotion API to determine the emotions in photos, so the system can find the best candidate music for each photo in the slideshow. 16 users rated the recommended background music for a set of photos using a 5-point likert scale and we achieved an average rate of 4.1, 3.6 and 3.0 for the photo sets 1, 2, and 3 respectively of our evaluation task.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a study about estimating the emotions conveyed in clips of background music (BGM) to be used in an automatic slideshow creation system. The system we aimed to develop, automatically tags each given pieces of background music with the main emotion it conveys, in order to recommend the most suitable music clip to the slideshow creators, based on the main emotions of embedded photos. As a first step of our research, we developed a machine learning model to estimate the emotions conveyed in a music clip and achieved 88% classification accuracy with cross-validation technique. The second part of our work involved developing a web application using Microsoft Emotion API to determine the emotions in photos, so the system can find the best candidate music for each photo in the slideshow. 16 users rated the recommended background music for a set of photos using a 5-point likert scale and we achieved an average rate of 4.1, 3.6 and 3.0 for the photo sets 1, 2, and 3 respectively of our evaluation task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EmoBGM:估计声音的情感,用合适的BGM创建幻灯片
本文研究了一种用于自动幻灯片制作系统的背景音乐(BGM)片段情感的估计方法。我们的目标是开发系统,自动标记每一个给定的背景音乐与它所传达的主要情感,以便推荐最合适的音乐剪辑给幻灯片的创作者,基于嵌入照片的主要情感。作为我们研究的第一步,我们开发了一个机器学习模型来估计音乐片段中传达的情感,并通过交叉验证技术实现了88%的分类准确率。我们的第二部分工作涉及开发一个web应用程序,使用Microsoft Emotion API来确定照片中的情绪,这样系统就可以为幻灯片中的每张照片找到最佳的候选音乐。16位用户使用5分likert量表对一组照片的推荐背景音乐进行评分,我们的评估任务的照片集1、2和3的平均评分分别为4.1、3.6和3.0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1