Gabriel Baraban, Siddharth Kothiyal, Marin Kobilarov
{"title":"Perception-Based UAV Fruit Grasping Using Sub-Task Imitation Learning","authors":"Gabriel Baraban, Siddharth Kothiyal, Marin Kobilarov","doi":"10.1109/AIRPHARO52252.2021.9571066","DOIUrl":null,"url":null,"abstract":"This work considers autonomous fruit picking using an aerial grasping robot by tightly integrating vision-based perception and control within a learning framework. The architecture employs a convolutional neural network (CNN) to encode images and vehicle state information. This encoding is passed into a sub-task classifier and associated reference waypoint generator. The classifier is trained to predict the current phase of the task being executed: Staging, Picking, or Reset. Based on the predicted phase, the waypoint generator predicts a set of obstacle-free 6-DOF waypoints, which serve as a reference trajectory for model-predictive control (MPC). By iteratively generating and following these trajectories, the aerial manipulator safely approaches a mock-up goal fruit and removes it from the tree. The proposed approach is validated in 29 flight tests, through a comparison to a conventional baseline approach, and an ablation study on its key features. Overall, the approach achieved comparable success rates to the conventional approach, while reaching the goal faster.","PeriodicalId":415722,"journal":{"name":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIRPHARO52252.2021.9571066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work considers autonomous fruit picking using an aerial grasping robot by tightly integrating vision-based perception and control within a learning framework. The architecture employs a convolutional neural network (CNN) to encode images and vehicle state information. This encoding is passed into a sub-task classifier and associated reference waypoint generator. The classifier is trained to predict the current phase of the task being executed: Staging, Picking, or Reset. Based on the predicted phase, the waypoint generator predicts a set of obstacle-free 6-DOF waypoints, which serve as a reference trajectory for model-predictive control (MPC). By iteratively generating and following these trajectories, the aerial manipulator safely approaches a mock-up goal fruit and removes it from the tree. The proposed approach is validated in 29 flight tests, through a comparison to a conventional baseline approach, and an ablation study on its key features. Overall, the approach achieved comparable success rates to the conventional approach, while reaching the goal faster.