A Projected Newton-type Algorithm for Rank - revealing Nonnegative Block - Term Tensor Decomposition

Eleftherios Kofidis, Paris V. Giampouras, A. Rontogiannis
{"title":"A Projected Newton-type Algorithm for Rank - revealing Nonnegative Block - Term Tensor Decomposition","authors":"Eleftherios Kofidis, Paris V. Giampouras, A. Rontogiannis","doi":"10.23919/eusipco55093.2022.9909799","DOIUrl":null,"url":null,"abstract":"The block-term tensor decomposition (BTD) model has been receiving increasing attention as a quite flexible way to capture the structure of 3-dimensional data that can be naturally viewed as the superposition of $R$ block terms of multilinear rank ($L_{r}, L_{r}, 1), r=1,2,\\ldots,R$. Versions with nonnegativity constraints, especially relevant in applications like blind source separation problems, have only recently been proposed and they all share the need to have an a-priori knowledge of the number of block terms, $R$, and their individual ranks, $L_{i}$. Clearly, the latter requirement may severely limit their practical applicability. Building upon earlier work of ours on unconstrained BTD model selection and computation, we develop for the first time in this paper a method for nonnegative BTD approximation that is also rank-revealing. The idea is to impose column sparsity jointly on the factors and successively estimate the ranks as the numbers of factor columns of non-negligible magnitude. This is effected with the aid of nonnegative alternating iteratively reweighted least squares, implemented via projected Newton updates for increased convergence rate and accuracy. Simulation results are reported that demonstrate the effectiveness of our method in accurately estimating both the ranks and the factors of the nonnegative least squares BTD approximation.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The block-term tensor decomposition (BTD) model has been receiving increasing attention as a quite flexible way to capture the structure of 3-dimensional data that can be naturally viewed as the superposition of $R$ block terms of multilinear rank ($L_{r}, L_{r}, 1), r=1,2,\ldots,R$. Versions with nonnegativity constraints, especially relevant in applications like blind source separation problems, have only recently been proposed and they all share the need to have an a-priori knowledge of the number of block terms, $R$, and their individual ranks, $L_{i}$. Clearly, the latter requirement may severely limit their practical applicability. Building upon earlier work of ours on unconstrained BTD model selection and computation, we develop for the first time in this paper a method for nonnegative BTD approximation that is also rank-revealing. The idea is to impose column sparsity jointly on the factors and successively estimate the ranks as the numbers of factor columns of non-negligible magnitude. This is effected with the aid of nonnegative alternating iteratively reweighted least squares, implemented via projected Newton updates for increased convergence rate and accuracy. Simulation results are reported that demonstrate the effectiveness of our method in accurately estimating both the ranks and the factors of the nonnegative least squares BTD approximation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示秩的非负块项张量分解的投影牛顿型算法
块项张量分解(BTD)模型作为一种非常灵活的捕获三维数据结构的方法而受到越来越多的关注,三维数据可以很自然地看作是多元线性秩($L_{R}, L_{R}, 1), R =1,2,\ldots,R$的块项R$的叠加。具有非负性约束的版本,特别是与盲源分离问题等应用相关的版本,直到最近才被提出,它们都需要具有块项数量的先验知识,$R$和它们的单个秩,$L_{i}$。显然,后一项要求可能严重限制它们的实际适用性。在我们之前关于无约束BTD模型选择和计算的工作的基础上,我们在本文中首次开发了一种非负BTD近似方法,该方法也具有秩揭示性。其思想是对因子联合施加列稀疏性,并依次估计作为不可忽略量级的因子列的数量的秩。这是借助于非负交替迭代加权最小二乘实现的,通过投影牛顿更新实现,以提高收敛速度和精度。仿真结果表明,该方法能够准确估计非负最小二乘BTD近似的秩和因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1